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ABSTRACT

ESTIMATING THE DISCREPANCY BETWEEN COMPUTER MODEL DATA

AND FIELD DATA: MODELING TECHNIQUES FOR DETERMINISTIC AND

STOCHASTIC COMPUTER SIMULATORS

Emily J Dastrup

Department of Statistics

Master of Science

Computer models have become useful research tools in many disciplines. In

many cases a researcher has access to data from a computer simulator and from a

physical system. This research discusses Bayesian models that allow for the estimation

of the discrepancy between the two data sources. We fit two models to data in the

field of electrical engineering. Using this data we illustrate ways of modeling both

a deterministic and a stochastic simulator when specific parametric assumptions can

be made about the discrepancy term.
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Chapter 1

Introduction

In many fields computer models are used as an additional source of data about

a physical system or process. Reasons for using computer models vary, but include

considerations such as the time and cost of gathering field data, limitations on the

ability to observe a process, ethical concerns about gathering experimental data, and

the desire to extrapolate where field data does not exist. In some situations, the

computer model may provide the only data used in an analysis. In other cases, data

from both field observations and computer models are available to the researcher. One

way the data from both sources is used is to estimate and quantify the differences

between the two types of information. This can be a way to validate the accuracy

of the computer model and provide a context for the interpretation of the simulated

results. While a general model to relate the two data sources can be applied to

many specific problems, a complete formulation of a statistical model requires detailed

information about the data in order to apply appropriate distributional assumptions.

This chapter gives background information about the simulator data and the field

experiment data for a specific research application in electrical engineering that will

be used as an illustrative example.

1
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1.1 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) allow for logic functions to be

integrated into hardware while providing a degree of flexibility because they can be

reprogrammed to a different set of functions as needed. This flexibility makes FPGAs

attractive for use in spacecraft because they can be reprogrammed after deployment

(Caffrey et al. 2003a).

The higher levels of radiation to which FPGAs are exposed in orbit can affect

their functioning in a variety of ways (Caffrey et al. 2003b). Single event upsets are of

interest because they change the actual design but do not cause permanent damage

because they can be easily repaired. Single event upsets can affect different structures

on the FPGA: user flip flops, configuration bits, latches, or registers (Caffrey et al.

2003b). A single event upset can cause the FPGA device to malfunction.

1.1.1 Flip Flop Upsets

User flip flops are structures in a FPGA design whose state can be affected

by radiation. A change of state in a user flip flop can cause an FPGA device to fail.

Because the number of configuration bits is much larger than the number of flip flops,

the vast majority of single event upsets caused by radiation in FPGAs are due to

configuration bit upsets (Caffrey et al. 2003a).

2
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1.1.2 Configuration Bit Upsets

A configuration bit can be in one of two states, represented by a 0 or a 1

(see Figure 1.1). A bit is upset when radiation (usually due to bombardment of

the FPGA by a high-energy particle such as a proton) causes it to change states.

Figure 1.2 is a replicate of Figure 1.1, however, one of its configuration bits has been

changed by radiation from 1 to 0, which in turn has modified the design structure.

A configuration bit upset does not necessarily cause an FPGA to fail. Whether a

particular upset affects the functioning of a design depends on what logic functions

the FPGA is asked to perform. The logic functions performed by an FPGA design

are determined by the input vector given to the device. The input vector is a series

of zeroes and ones that determines what calculations are performed. The length of

the input vector depends on the individual design. For a 32-bit design there are 232

unique input vectors available (Johnson 2005).

10100

1010100
10100
10100
10100

0001100000

1010001101
1011000101

1011010100

1011001100
0101110100
1110010010

Figure 1.1: Configuration bits and design architecture

 010100
10100
10100
10100
10100

SEU

1110010010

0

1011010100

1010001101
1011000101
0001100000
1011001100
0101110100

Figure 1.2: Design change caused by a configuration bit upset
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Configuration bits that control essential parts of the design will be more likely

to cause a design failure when upset than a configuration bit associated with a less

important structure. In fact, a certain proportion of configuration bits are not utilized

by a given design at all and therefore will never cause it to fail if upset. The probability

that a particular configuration bit causes a device failure when upset given a randomly

selected input vector is called its bit sensitivity.

1.2 Ground-Based Radiation Testing

Ground-based radiation testing attempts to simulate the radiation environ-

ment to which an FPGA might be exposed in orbit. One way to simulate radiation

bombardment in space is through the use of a proton accelerator. To perform the

test, an FPGA design is bombarded by a proton beam. At certain intervals, the

output from this design is then compared to the output from an identical “golden

design” that is shielded from the radiation (see Figure 1.3). A discrepancy in the

output of the two designs indicates that a device failure has occurred. The design is

also checked at intervals for configuration bit upsets. The time stamp at which each

configuration bit upset or output error is observed is recorded. The configuration

bitstream is then repaired and the device is reset (Caffrey et al. 2003a).

Protons are a good radiation source for ground-based testing because the pro-

ton beam can be adjusted to cause a very low upset rate. The goal is to adjust the

beam intensity so that only one configuration bit is upset in the observation window.

This is useful when applying the results from the testing to a space environment,

since it is believed that only one configuration bit will be upset at a time in orbit

4



www.manaraa.com

.75" Aluminum shielding

Linux PC

PCI extender card

socketed DUT
part number:
XCV1000
FG680AFP0017
F1102747A
5C

golden part

control

SLAAC1-V PCI card

socketed DUT

63.3 MeV p+

vacuum

Top View

Side View

.75" Aluminum
shielding

SLAAC1-V PCI card

ethernet to control room

Figure 1.3: Accelerator Test Setup

conditions (Caffrey et al. 2003a). It is also important for comparison with the fault

injection simulator results to be introduced later since the simulator also only looks

at the effects of configuration bits that occur one at a time. Even with adjustments

to the proton beam, there are still intervals where two or more configuration bits

are upset during an observation cycle. These cases are excluded from the analysis

(Caffrey et al. 2003a).

An important characteristic of ground-based radiation testing is that the pro-

ton bombardment causes both configuration bit, flip flop, and other device state

errors. It is impossible to eliminate output errors caused by flip flops and other

5
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structures (Caffrey et al. 2003b). A classification system has been employed to try to

distinguish between output errors caused by configuration bit upsets and those caused

by user flip flop errors. In essence, if a location at the accelerator associated with an

output error never caused an error in simulator testing, the error is assumed to be due

to a flip flop. This is a conservative adjustment, however, and may not completely

remove the discrepancy between the two data sources. Two types of data therefore

exist for the accelerator testing: total output errors and adjusted output errors. This

analysis uconsiders both total and adjusted errors in order to examine how much this

adjustment reduces the discrepancy between the simulator and accelerator results.

Proton accelerator testing is time-consuming and expensive. Additionally, the

specific configuration bits that are upset during testing cannot be directly chosen by

the researcher. Because of the limitations of time and cost, only a small fraction of

the 5,810,024 configuration bits used in a design can be upset during the testing. In

addition, each upset location is only tested with one input vector. The data about

a specific design that can be gathered during ground-based radiation testing is very

limited.

1.3 Fault Injection Simulator

The fault injection simulator attempts to study the behavior of an FPGA in a

radiation environment without using radiation to induce configuration bit upsets. The

setup of the fault injection simulator is shown in Figure 1.4. Note that two FPGAs

of the same design are needed to run the simulator. Configuration bit upsets are

manually inserted into one of the FPGAs. The output is then compared to the other

6
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FPGA (the “golden design”) that has not been altered. If there is a discrepancy in

the output from the two FPGAs (detected by the comparator), the simulator records

that the configuration bit upset caused a device failure (Johnson 2005).

FPGA 1 FPGA 2

Comparator

Figure 1.4: Fault Injection Simulator

There are many advantages to using the fault injection simulator in order to

gain understanding about the effects of configuration bit upsets on FPGA design func-

tion. Unlike the proton accelerator testing, the simulator can test every configuration

bit in the design. Because the testing is so much faster than ground-based testing,

each configuration bit can also be tested with multiple input vectors. These input

vectors are randomly selected among the population of all input vectors. The number

of input vectors or locations to be tested can be controlled by the researcher (Johnson

2005). The simulator allows for much better coverage of both the configuration bit

and the input vector space than proton accelerator testing.

The simulator is only designed to test the effects of configuration bit upsets

on FPGA functionality. It is not able to test for device failures due to flip flop errors

7
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or other single event upsets (Johnson 2005).

1.4 Comparing the Simulator and Accelerator Testing Results

In order to validate the results from the fault injection simulator, tests of

several designs were performed using both fault injection simulator and the proton

accelerator data. One way to compare the results from the simulator and ground-

based radiation testing is to look at the average sensitivity as measured by both

testing methods.

1.4.1 Average Sensitivity

The average sensitivity is defined as the total observed device failures divided

by the total number of configuration bit upsets. The average sensitivity of a design

can be interpreted as the probability that a randomly selected configuration bit causes

an FPGA output error. If the probability that an upset configuration bit at location

k causes a device failure (denoted by pk) were known, we could alternatively calculate

the average sensitivity by computing Σn
kpk/n, where n is the total number of unique

configuration bits in the sample. The average sensitivity is an aggregate measurement

that represents the relative sensitivities of various designs to radiation. It can be easily

computed from both the simulator and proton accelerator testing data.

1.4.2 Validating the Simulator

The question of interest is how the results from the simulator compare to

results from ground-based radiation testing. Since both testing methods have the

8



www.manaraa.com

objective of studying the sensitivity of FPGA designs in a radiation environment, it

is of interest to calculate how close the estimates of the average sensitivity are for

both methods. Since the accelerator necessarily measures the effects of more than

just configuration bit upsets, we expect estimates of average sensitivity from the

accelerator to be higher than those from the simulator. Specific goals of this analysis

include:

• Determine if the data evidences a systematic discrepancy between the simu-

lator predictions of the average sensitivity and the proton accelerator results.

• Quantify the magnitude of the discrepancy and the uncertainty associated

with the estimate.

• Predict the outcome of accelerator testing for a new design using only data

gathered from the simulator.

Ability to estimate the magnitude of the discrepancy between the two testing methods

will provide information about how the simulator performs in relation to traditional

testing methods. It will also allow for a more precise understanding of the differences

in the two testing methods. By building a model that connects the accelerator results

with the simulator results, we gain an idea of how a design will perform in ground-

based testing using only data gathered from the simulator.

1.4.3 Use of Bayesian Statistical Models

Certain characteristics of the research question lend themselves to a Bayesian

statistical methodology. Bayesian methods readily accommodate data from different

9
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sources. They also allow for the incorporation of prior information about the problem.

In addition, a large amount of work has been done in the area of combining data from

computer and physical experiments using Bayesian methods. This work poses and

fits two different Bayesian statistical models to quantify the discrepancy between the

two sources. Both models provide metrics for the validation of the fault injection

simulator performance and can be used to make predictions of new design behavior.

10
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Chapter 2

Literature Review

2.1 Statistical Methods involving Computer Models

The increased development and use of computer models has introduced rich

areas of research for the discipline of statistics. Statisticians are involved with both

the collection and analysis of data from these models. The questions addressed by

computer model researchers fall into a few basic categories (see Higdon et al. (2004)):

• Statistical Emulators of Complex Computer Models

• Designing Computer Experiments

• Sensitivity or Uncertainty Analysis

• Relating Data from Computer Models and Field Experiments.

A particular project may require the use of techniques from each of these areas. For

example, a researcher may primarily be interested in calibrating a computer model.

However, the computer model may be so complex that she needs to use data from

a statistical emulator as a substitute for the computer output. Although there is

considerable overlap between these categories they provide a basic framework for

understanding some of the overarching issues in utilizing computer model data.

11
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2.1.1 Statistical Emulators of Complex Computer Models

Among the types of computer models used in research are computationally

intensive and complex models that require large amounts of time to generate output.

For these models, it is not feasible to generate output at all the levels of interest

of the input parameters. One statistical question of interest is how to choose the

inputs at which to run the model in order to gain the most information about the

response surface. The question of how to choose the input values and how many runs

are necessary falls under the subdiscipline of computer experiments. This area of

research tries to select designs that can give optimal information about the inference

space subject to constraints on the number of runs that can be performed with the

model. Santner et al. (2003) explores design issues specific to computer models in

depth.

Once the observations from the complex model have been generated, the ques-

tion becomes how to use the information to extend the inference to locations where

the researcher has been unable to observe data. The data collected in the com-

puter experiment is used to estimate a statistical emulator. A statistical emulator

is a statistical smoother or interpolator that approximates the response surface over

the inference space. The statistical emulator is able to quickly produce estimates of

the response variable at locations where output is not observed from the computer

model. Gaussian process models have been used extensively as statistical emulators

((Kennedy and O’Hagan 2001) ; (Bayarri et al. 2002)). Other types of approximators

include Bayesian linear estimators ( (Craig et al. 1997);(Craig et al. 2001)). The
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intent of the statistical emulator is to provide a quick approximation of the computer

model output.

2.1.2 Sensitivity or Uncertainty Analysis

A typical computer model will require values for a certain number of inputs

in order to produce estimates. Some of these values may be fixed or known by

the researcher. The values of other inputs, however, may be unknown or measured

with error. In sensitivity analysis, the research will vary an unknown parameter

across a range of reasonable values to see how much the output is affected by the

value of that parameter. If a certain parameter value has a large impact on the

final computer output, it can be said the model is highly sensitive to the value of

that parameter. While the terminology is not standardized, uncertainty analysis is

usually carried out more systematically, and can address the uncertainty associated

with several parameters. This area again overlaps into the broader area of computer

experiments. Here, the objective is to design an experiment that will allow for a

good estimate of the uncertainty in the model outputs due to the uncertainty in

the inputs. A researcher chooses factor levels for each input parameter of interest

that capture the amount of uncertainty associated with the parameter. By holding

the known parameters constant and varying the other inputs, the researcher can

get an estimate of error or uncertainty in the computer output. While there may

be many other sources of uncertainty associated with a computer model, this type of

analysis attempts to address at least the uncertainty due to the inability to completely

specify the input parameters. Bayarri et al. (2002) presents a detailed methodology
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for computing “tolerance bounds” that reflect the accuracy that can be associated

with the computer model based on a consideration of various sources of uncertainty.

Oberkampf et al. (2002) discuss an approach of sampling among reasonable input

parameters as part of their discussion of validation activities relating to computer

experiments.

2.1.3 Relating Data from Computer Models and Field Experiments

A third area of research is how to use field data and computer data together

(or alternatively, the data from two or more different computer models of a system)

to gain information about the system as a whole. There are different ways that

field data is used to connect the two systems. One important area is in calibration

or tuning of the computer model. In calibration, the researcher uses data from field

experiments to get estimates for certain parameters such that the parameters produce

the best fit of the computer model data to the available field data. In this way,

the researcher attempts to adjust the computer model so that it more accurately

mimics the behavior of the actual system. A traditional approach is known as inverse

modeling. In this approach the field data is used to find the best fitting of the

calibration or tuning parameters (Hill 1998). Solving these inverse problems can be

very difficult computationally. Bayesian approaches are discussed in detail in Kennedy

and O’Hagan (2001), Higdon et al. (2004), and Goldstein and Rougier (2004).

Field data may also be incorporated into an analysis in order to borrow

strength across data sources to get more accurate predictions. This is especially true

in cases where it is much easier to get computer model observations than field data.
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Combining data from both sources is an attempt to get more precise and accurate

predictions than would be available with a separate analysis (Qian et al. 2004).

A final use of field data and computer experiment data is to validate or gain

a better understanding of the accuracy of the computer model. The goal is to inte-

grate information from both sources in order to get an estimate of the discrepancy

between the computer model predictions and the observed data ((Oberkampf et al.

2002);(Higdon et al. 2004);(Bayarri et al. 2002);(Goldstein and Rougier 2004)). This

allows the researcher to evaluate the accuracy of the model and interpret the com-

puter model output in the context of the physical system. Accurate estimates of the

discrepancy between the two sources also allow the researcher to transfer a computer

model estimate into an estimate of the behavior of the actual system.

2.2 Models for Relating the Two Data Sources

This research focuses specifically on the question of how to simultaneously

model field data and computer model data in order to understand the relationship

between the two systems. This can be done in either a likelihood or Bayesian frame-

work. This research focuses on the use of Bayesian models to connect the two systems.

Bayesian models to estimate the discrepancy between the computer model output and

field observations have been explored extensively. Higdon et al. (2004) present sev-

eral alternative Bayesian statistical models that allow for estimation of a discrepancy

term and values of tuning parameters. They use Gaussian process models both for

the computer model output (as a statistical emulator) and the discrepancy term. A

similar approach is discussed in Bayarri et al. (2002).
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Goldstein and Rougier (2004) discuss a series of Bayesian models for a simple

simulator, a complex simulator, and multiple simulators. Their approach can be

applied using a variety of different likelihoods depending on the nature of the data.

While their model for a direct simulator is presented in the context of combining

computer model and field experiment data, it can also be viewed as a formulation

of a measurement error model. This research will apply and adapt their general

Bayesian model for a direct simulator to the FPGA sensitivity data. The research

will be carried out according to the following steps:

• Selection of an appropriate likelihood

• Elicitation of prior distributions and hyperparameters

• Implementation of Metropolis-Hastings MCMC methods of estimation

• Assessment of convergence and goodness-of-fit

• Selection of posterior distribution summaries

• Model Prediction.

This work adapts their general model to the case of a deterministic simulator

and later to the case of a stochastic simulator. It illustrates how to fit both types of

models using the FPGA data.

There are certain characteristics of this case study from electrical engineer-

ing that allow for the exploration of some important issues in computer modeling

research. Much of the research discussed above uses what is known as a “black box”
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approach to formulating a model (Kennedy and O’Hagan 2001). The term black box

refers to the fact that specific information about the simulator or the discrepancy

term is not included in the modeling assumptions. Often, this information is simply

unavailable, so a flexible approach such as Gaussian process modeling can provide a

good fit without needing to specify the functional form of the discrepancy term or

the relationship between the simulator inputs and outputs. This case study examines

a situation where prior information is available about the relationship between the

simulator and the field observations. Because of the simplicity of the example and

the information available, we are able to formulate a statistical model that specifies

a functional form for the discrepancy mean. This is known as “gray box” modeling.

The simulator under study is also fairly unique in that it is a stochastic simu-

lator. While several of the papers listed above discuss how to generalize their models

to the case of a stochastic simulator, concrete examples of statistical models involving

a stochastic simulator are rare. We explain the differences in approach when moving

from a deterministic to a stochastic simulator and illustrate how to fit the two types

of models by applying distributional assumptions to the FPGA data. The determin-

istic simulator model uses a likelihood based on a normal approximation to sums

of independent random variables, since the average sensitivity can be expressed as

such a sum. The stochastic simulator model uses a likelihood based on the binomial

distribution, since the raw data from both the simulator and the accelerator can be

treated as a number of design failures in a fixed number of trials. Since we expect to

see overdispersion due to correlation in the simulator results, we include an additive

overdispersion parameter to better model the variance.
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Chapter 3

Fitting the Deterministic Simulator Model

The deterministic simulator analysis is based on a simple additive model mo-

tivated by the direct simulator example in Goldstein and Rougier (2004). Let y be

a vector of the true values under study. We observe z, a vector of field observations,

with error e. In this discussion, the error is assumed to be additive. The relationship

between the true values y and the observed data z can then be expressed as

z = y + e.

Similarly, the vector of true values y is believed to be related to the vector

of simulator output measured at the same covariate values (denoted by C). In this

model we assume that y = C + ε, where ε is the discrepancy between the simulator

output and the true value. Note that the simulator output C is treated as a constant.

In reality the fault injection simulator is not deterministic. For simplicity, we ignore

the stochastic component in this first model.

We can use the above model specification to relate the field data z to the

simulator output C. The relationship can be expressed as

z = C + e + ε.
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Since the simulator output is treated as deterministic we do not jointly model the

data from the accelerator and the simulator. Instead, we are essentially modeling the

difference between the two sources z − C. This is a general model that can be used

for any deterministic simulator where we have simulator data at the same levels as

the field observations. To illustrate how to fit this type of model we use the FPGA

application data and make specific distributional assumptions about e and ε.

3.1 Data from Accelerator Testing

This analysis considers the data from four designs that have been tested both

at the accelerator and with the fault injection simulator. The field data comes from

two ground-based radiation testing sessions at Crocker Nuclear Laboratory. Data also

exists from an additional session; however, the testing procedure changed between this

and subsequent visits. Because of the change in procedure, the data from this initial

session is excluded from the likelihood. Some designs tested use TMR technology

which is designed to reduce the sensitivity of the design. The effect of TMR technology

is not the focus of the analysis and the data from the TMR designs is not as complete.

For these reasons, any data involving TMR designs is also excluded. Table 3.1 shows

the data for the four designs to be analyzed. For each design we report the number

of locations upset and the average sensitivity (both total and adjusted as discussed

in Section 1.2) computed for that run. The unadjusted data is the raw data from

accelerator testing and is used to compute all results unless noted otherwise. Some

designs were of greater interest for research purposes and were tested more extensively

than others.
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Obs Design Total Bits Upset (M) Average Sensitivity (z) Average Sensitivity (Adjusted)
1 Multiplier 4634 0.0993 0.0904
2 Multiplier 1293 0.1060 0.0959
3 Counter 1050 0.0400 0.0390
4 Counter 10036 0.0412 0.0391
5 Counter 9982 0.0379 0.0362
6 Snapshot Recorder 1909 0.0980 0.0906
7 Snapshot Recorder 5096 0.0995 0.0936
8 Snapshot Recorder 4307 0.0984 0.0924
9 Snapshot Recorder 10069 0.0967 0.0918
10 Snapshot Recorder 14953 0.0963 0.0912
11 Snapshot Recorder 5029 0.0929 0.0881
12 Snapshot Recorder 8893 0.0964 0.0912
13 Snapshot Recorder 34 0.1176 0.1176
14 Snapshot Recorder 2823 0.0886 0.0818
15 Snapshot Recorder 559 0.1252 0.1145
16 Snapshot Recorder 95 0.0526 0.0526
17 Snapshot Recorder 167 0.0719 0.0599
18 Snapshot Recorder 317 0.0631 0.0599
19 Snapshot Recorder 6135 0.0998 0.0936
20 Snapshot Recorder 924 0.1028 0.0942
21 Snapshot Recorder 5726 0.0959 0.0891
22 Snapshot Recorder 12641 0.0957 0.0904
23 Snapshot Recorder 719 0.0932 0.0904
24 Snapshot Recorder 2030 0.0857 0.0818
25 Snapshot Recorder 1274 0.0769 0.0738
26 Snapshot Recorder 1569 0.0911 0.0854
27 Snapshot Recorder 236 0.0932 0.0932
28 Snapshot Recorder 1957 0.0920 0.0874
29 Snapshot Recorder 4194 0.0882 0.0827
30 Snapshot Recorder 595 0.0958 0.0908
31 Snapshot Recorder 5196 0.0939 0.0893
32 Snapshot Recorder 328 0.0945 0.0884
33 Snapshot Recorder 571 0.1051 0.0963
34 Snapshot Recorder 371 0.0970 0.0970
35 Snapshot Recorder 8075 0.0977 0.0925
36 Snapshot Recorder 14309 0.0967 0.0906
37 Snapshot Recorder 1659 0.1013 0.0992
38 Snapshot Recorder 4001 0.0877 0.0992
39 Synthetic No TMR 106 0.0566 0.0566
40 Synthetic No TMR 3812 0.0795 0.0740
41 Synthetic No TMR 2372 0.0742 0.0708
42 Synthetic No TMR 4736 0.0758 0.0707
43 Synthetic No TMR 8929 0.0750 0.0708
44 Synthetic No TMR 1793 0.0742 0.0697
45 Synthetic No TMR 501 0.0579 0.0559
46 Synthetic No TMR 634 0.0662 0.0615
47 Synthetic No TMR 2698 0.0756 0.0723
48 Synthetic No TMR 489 0.0798 0.0695
49 Synthetic No TMR 2219 0.0685 0.0658
50 Synthetic No TMR 1065 0.0817 0.0761
51 Synthetic No TMR 9787 0.0743 0.0697
52 Synthetic No TMR 1466 0.0621 0.0600

Table 3.1: Average Sensitivity Calculated from the Accelerator Data

3.2 Data from the Fault Injection Simulator

This first model treats the data from the simulator as a known constant. The

simulator tested most of the designs 150 times. The total number of configuration

bits, 5,810,024, is constant for all designs. The data from the 150 tests was combined

to compute one measure of the average sensitivity. In the case of the simulator, the

average sensitivity can be expressed as:

Average Sensitivity =
Total Output Errors

n× Total Configuration Bits
.

20



www.manaraa.com

This sample size is believed to give accuracy to the third decimal place in repeated

tests. Table 3.2 shows simulator estimates of the average sensitivity for the four

designs used in the analysis.

Design n Average Sensitivity
Multiplier 150 0.0889
Counter 150 0.0312
Snapshot Recorder 150 0.0863
Synthetic No TMR 100 0.0614

Table 3.2: Average Sensitivity Measured by the Simulator for Four Designs

3.3 Specification of the Likelihood

We adapt the notation for the general deterministic simulator model to the

FPGA data. For this model, let yi be the true average sensitivity for the ith design

under ground-based radiation testing. This sensitivity metric will include output

errors due to configuration bit upsets and inevitably some flip flop upsets as well.

We observe zij, the average sensitivity calculated for the jth test of the ith design.

In addition, we observe the output Ci from the fault injection simulator for the ith

design.

The general model relates the accelerator data to the simulator output, but

has not made any distributional assumptions. To decide on a reasonable likelihood

we need to look at the characteristics of the data z. The proportions calculated from

the accelerator tests are sums of Bernoulli random variables, where each upset bit can

take on a value of 0 (does not cause an output error) or 1 (causes an output error).

The amount of data from the accelerator relative to the total number of configuration
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bits is limited. Since the upset locations are sparse, it is reasonable to assume that

the number of upset locations adjacent to each other is essentially zero. We would

expect non-neighboring locations to be part of different structures on the circuit and

therefore independent. If the data is independent (but not necessarily identically

distributed) then by the Liapounov Central Limit Theorem the distribution of the

sum of the Bernoulli random variables should be well-approximated by the normal

distribution if certain conditions are satisfied. A version of the theorem is stated

below, as found in Lehmann (1999).

Theorem 1

Let Xi (i=1,...,n) be independently distributed with means E(Xi)=ξi and variances

σ2
i , and with finite third moments. If

Yn =

√
n(X̄ − ξ̄)√

(σ2
1 + ... + σ2

n)/n
,

then

Yn → N(0, 1),

provided

(E(Σ|Xi − ξi|3))2 = o((Σσ2
i )

3).

The conditions of the theorem are not likely to be satisfied for designs with

a large number of non-sensitive bits, since pk (the probability that the configuration

bit at location k produces an output error) is then not bounded away from zero.

Since the variance of the sum of independent random variables depends on the

sum of the variances of each random variable we would expect the variance of the

22



www.manaraa.com

proportion to differ from one design to the next. From the theorem, we also know

the variance is dependent on the sample size. We expect a smaller variance for a

proportion calculated from 50,000 upsets than one calculated from 10,000 upsets. The

following specification of the sampling error accounts for the difference in variances

across designs and sample size,

eij ∼ N(0,
κ2

i

Mij

),

where κi is a parameter representing the measurement error variance of the obser-

vations zij for design i, and Mij is the sample size of the jth replicate of the ith

design.

Less information from statistical theory is available to indicate what distrib-

utional characteristics the model discrepancy term εi should have. However, infor-

mation does exist in the form of expert opinion. The discrepancy should be some

function of the proportion of flip flop structures present on a design. Keith Morgan, a

graduate student in the department of electrical engineering at Brigham Young Uni-

versity, suggests that a linear relationship between the discrepancy and the number

of flip flops is a reasonable modeling assumption. In this analysis we model

εi ∼ N(β1Xi, τ
2),

where Xi is a constant equal to the number of design flip flops divided by the total

number of configuration bits in the design. Table 3.3 lists the number of flip flops

utilized by each design and the corresponding value for Xi.

The parameter β1 can be thought of as the bias parameter - in other words,

β1Xi will indicate the degree by which the simulator is systematically over- or under-
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Design Flip Flops Flip Flops/Total Configuration Bits (X)
Multiplier 14,832 0.002553
Counter 9,601 0.001652
Snapshot Recorder 9,187 0.001581
Synthetic No TMR 7,244 0.001247

Table 3.3: The Number of Flip Flops Utilized by Each of the Four Designs

predicting the true average sensitivity for the ith design. The other parameter τ 2 is

the variance of this discrepancy term. It indicates how much uncertainty is associated

with the discrepancy term across designs.

As noted above, we express zij = Ci+eij +εi. Note that zij is simply a constant

plus the sum of two independent normal random variables. From probability theory

we know that zij ∼ N(Ci + β1Xi,
κ2

i

Mij
+ τ 2). The likelihood for all the observed data

is

f(z|β1, κ
2, τ 2) = Π4

i Π
ni
j

1√
(2π(

κ2
i

Mij
+ τ 2))

exp

−(zij − Ci − β1Xi)
2

2
(

κ2
i

Mij+τ2

)
 .

3.4 Elicitation of Prior Distributions and Hyperparameters

This model uses informative priors for all parameters. We treat the variance

parameters κ2
i as hierarchical parameters, where we assume there exists a mean vari-

ance for the population of all designs, and that the individual design variances are

distributed about that mean as follows:

κ2
i ∼ GAM(α, β)

α ∼ GAM(aα, bα)

β ∼ GAM(aβ, bβ).
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We propose to use the gamma distribution as a prior for both the variance parameters

κ2
i and τ 2 and the hierarchical parameters α and β because it preserves the parameter

space by being defined on the interval (0,∞). As a two parameter distribution, it is

fairly flexible in the kinds of shapes it can accommodate. All gamma distributions

used in this model follow the form

p(θ) =
βα

Γ(α)
θα−1exp(−βθ),

which is sometimes referred to as the rate parametrization. To fully specify the model

we make the following additional assumption:

β1 ∼ N(u, s2).

The analysis requires hyperparameters for β1, τ
2, α, and β. The hyperparame-

ter values specified for α and β are motivated by Liapounov’s Central Limit Theorem.

From the central limit theorem we know that the variance of zij is the average variance

of Mij Bernoulli variables and can be expressed as Σk
(pk)(1−pk)

M2
ij

, where k indexes the

configuration bit locations. Each design should have an average variance κi that lies

in the interval (0,0.25), since the variance of any one Bernoulli variable is pk(1− pk).

Of the population of all FPGA designs, we specify that the average variance should

be about 0.10 × 0.90, with a variance of about 0.002. This variance is large enough

for the distribution of κ2
i s to cover the interval of possible variances (0,0.25) defined

by the statistical theory, while giving less probability to extremely small or extremely

large average variances. We use moment matching to find reasonable estimates for α

and β that define the moments listed above but still express uncertainty as to their
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exact values. The hyperparameters for the distributions of α and β are shown in

Table 3.4.

The hyperparameters for the distributions of β1 and τ 2 are harder to specify.

In this case we need to rely on expert opinion and past experience rather than on

statistical theory. Results from the first accelerator tests (not used in this analysis)

suggest that the simulator and accelerator estimates differ in the third decimal place.

Since the data at the proton accelerator tests includes a certain number of flip flop

errors, the average sensitivity from the simulator should underpredict the average

sensitivity seen in accelerator testing. Dr. Michael Wirthlin in the department of

electrical engineering at Brigham Young University estimates that the magnitude of

the underprediction, denoted in the model by β1X, will fall somewhere between 1

and 2 percent. Hyperparameters are chosen to concentrate most of the probability

for β1 between 0 and 20. This allows β1X to vary between 0 and 3.2 percent. The

prior distribution for β1 is shown in Figure 3.1 and the hyperparameters are listed in

Table 3.4 . The hyperparameters of the variance of the model discrepancy are even

more difficult to specify with certainty. The distribution of τ 2 should reflect the degree

of uncertainty regarding the model discrepancy term without being unreasonably

large.

3.4.1 Sensitivity Analysis for τ 2

Because only limited information is available about τ 2, we perform a sensitivity

analysis to evaluate whether the chosen prior exerts too much influence on the final

results. The model estimates under the original prior specification are compared to
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Figure 3.1: Prior Distribution for β1

Parameter Distribution Hyperparameter Value
β1 Normal u 10
β1 Normal s2 25
α Gamma aα 16.4
α Gamma bα 4.05
β Gamma aβ 405
β Gamma bβ 9
τ 2 Gamma aτ* 33.33
τ 2 Gamma bτ* 3,333,333
*modified in Section 3.4.1

Table 3.4: Listing of All Hyperparameters

estimates using two alternative priors. In the alternative priors, the hyperparameters

are adjusted to increase the prior variance while holding the prior mean constant.

Under the rate parametrization of a gamma distribution with parameters α and β

the mean is defined to be α
β

and the variance is defined as α
β2 . By increasing the

variance, the priors become flatter and the data is allowed to exert more influence

on the estimated posterior distribution. Table 3.5 shows how the posterior mean and
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variance of τ 2 change under the three different prior specifications. When the prior

variance is increased, the data is able to pull the posterior mean down to a smaller

estimate. The original prior chosen for the model constrains the posterior mean for

τ 2 to be larger than the other less-informative priors. This adds uncertainty to the

model predictions. The effect of the additional uncertainty on model predictions can

be seen in the width of the prediction intervals listed in Table 3.6.

Marginal Posterior Summaries
Prior Distribution Mean of τ 2 Variance of τ 2

aτ = 33.33, bτ = 3, 333, 333* 9.21× 10−6 2.53× 10−12

aτ = 3.33, bτ = 333, 333 5.44× 10−6 1.01× 10−11

aτ = 1.67, bτ = 166, 667 3.72× 10−6 8.18× 10−12

*original prior

Table 3.5: Posterior Mean and Variance for τ 2 Under Three Proposed Priors

Prior Distribution Design 95% HPD Interval for yi

aτ = 33.33, bτ = 3, 333, 333* Multiplier 0.0967-0.1097
aτ = 3.33, bτ = 333, 333 Multiplier 0.0980-0.1085
aτ = 1.67, bτ = 166, 667 Multiplier 0.0988-0.1079
aτ = 33.33, bτ = 3, 333, 333* Counter 0.0343-0.0467
aτ = 3.33, bτ = 333, 333 Counter 0.0357-0.0456
aτ = 1.67, bτ = 166, 667 Counter 0.0365-0.0450
aτ = 33.33, bτ = 3, 333, 333* Snapshot Recorder 0.0891-0.1014
aτ = 3.33, bτ = 333, 333 Snapshot Recorder 0.0904-0.1003
aτ = 1.67, bτ = 166, 667 Snapshot Recorder 0.0911-0.0995
aτ = 33.33, bτ = 3, 333, 333* Synthetic No TMR 0.0666-0.0787
aτ = 3.33, bτ = 333, 333 Synthetic No TMR 0.0678-0.0775
aτ = 1.67, bτ = 166, 667 Synthetic No TMR 0.0687-0.0770
*original prior

Table 3.6: Prediction Intervals for True Accelerator Sensitivity Under Three Proposed
Priors for τ 2

Since we do not have definitive prior information about τ 2, it is undesirable
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to constrain the posterior estimates to be large by using a prior that is too peaked.

In order to avoid being too informative, the original hyperparameters are modified to

aτ = 1.67 and bτ = 166, 667. Unless otherwise specified, these will be the hyperpara-

meters for τ 2 used for model estimation.

3.5 Implementation of MCMC methods of estimation

The specification of this first model requires the use of Metropolis-Hastings

methods for posterior simulation nested within a Gibbs sampler. These methods are

implemented as described in Gelman et al. (2004). The complete conditionals for each

parameter form part of the Markov Chain Monte Carlo (MCMC) algorithm used to

generate draws from the joint posterior distribution. The kernel of each parameter’s

complete conditional is listed below:

[β1] ∝ Π4
i Π

ni
j exp

−(zij − Ci − β1X)2

2
(

κ2
i

Mij
+ τ 2

)
 exp(−(β1 − u)2

2s2
)

[κ2
i ] ∝ Πni

j (2π(
κ2

i

Mij

+ τ 2))−
1
2 exp

−(zij − Ci − β1X)2

2
(

κ2
i

Mij
+ τ 2

)
κ

2(α−1)
i exp(−βκ2

i )

[τ 2] ∝ Π4
i Π

ni
j 2π(

κ2
i

Mij

+ τ 2))−
1
2 exp

−(zij − Ci − β1X)2

2
(

κ2
i

Mij
+ τ 2

)
 τ 2(aτ−1)exp(−bττ

2)

[α] ∝ Π4
i κ

2(α−1)
i αaα−1exp(−bαα)

[β] ∝ Π4
i exp(−βκ2

i )β
aβ−1exp(−bββ).
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3.6 Assessing Model Convergence

One hundred thousand realizations from the posterior distribution of each of

the parameters are generated using Gibbs sampling and the Metropolis-Hastings al-

gorithm as described in section 3.5. The number of generated realizations is chosen

to provide accurate estimates without excess computation. Figures 3.2 and 3.3 show

time series plots of the first 10,000 realizations of the chain. The first 4,999 observa-

tions are discarded as burn-in. The plots suggest that the algorithm has converged

and has been tuned correctly. The algorithm is not staying at the same value too

frequently and the variance of the candidate distribution appears to be large enough

for the algorithm to adequately cover the parameter space.
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Figure 3.2: Convergence Plots for α, β, β1, and τ 2
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Figure 3.3: Convergence Plots of κ for the Four Designs Listed in Table 1

3.7 Assessing Goodness-of-fit

Each of the observations from the accelerator is systematically withheld and

the model is fit to the remaining data. The withheld observation is compared to

its posterior predictive distribution. Table 3.7 reports the percentile of the posterior

predictive distributions corresponding to the withheld observation. The percentage

of observations that fall outside the 95% equal-tailed prediction area after being

withheld is compared to the expected 5% error rate. Out of the 52 total observations,

one fell in the lower 0.025 tail of the posterior predictive distribution and two fell

in the upper 0.025 tail. The 3 out of 52, or 5.8% of the observations that fell into

these tails is very close to the 5.0% we would expect to see in a random sample. The

rest of the observations lie in areas of high probability in their respective predictive

distributions. The model is internally consistent with respect to its predictive ability.

In addition, data on the average sensitivity exists for three designs tested at an
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Obs Percentile Obs Percentile
1 0.8634 27 0.5467
2 0.3441 28 0.6846
3 0.5393 29 0.9342
4 0.4167 30 0.4762
5 0.8469 31 0.6209
6 0.3466 32 0.5219
7 0.1767 33 0.2176
8 0.2604 34 0.4573
9 0.3437 35 0.2643
10 0.3729 36 0.3180
11 0.7069 37 0.2161
12 0.3837 38 0.9427
13 0.3299 39 0.7592
14 0.8791 40 0.0555
15 0.0057* 41 0.3987
16 0.9271 42 0.2183
17 0.8514 43 0.2374
18 0.9778* 44 0.4107
19 0.1341 45 0.9161
20 0.2173 46 0.7485
21 0.4495 47 0.2859
22 0.4469 48 0.2625
23 0.5710 49 0.7876
24 0.9255 50 0.1199
25 0.9885* 51 0.3107
26 0.7142 52 0.9537
*outside interval

Table 3.7: Cross-Validation Results

earlier session at Crocker Nuclear Laboratory. This data is excluded from the analysis

due to testing changes implemented at the later sessions. While it is unclear how these

changes will affect the average sensitivity measure, we expect some continuity across

testing methods. Since this data is not used in likelihood of the model, it can be

used as hold-out data to evaluate the fit. Table 3.8 shows the 95% Highest Posterior

Density (HPD) credible prediction intervals for the behavior of each of the designs
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with the corresponding observed accelerator value and sample size. These intervals

are calculated using the same methods detailed in Section 3.9.2 for estimating the

behavior of a new design at the accelerator. Note that five of the eight observed

values fall within the prediction intervals.

Design N Observed Sensitivity 95% HPD Interval
VMULT72 57 0.2105 0.0974-0.2389
VMULT72 5754 0.1724 0.1606-0.1772
VMULT72 1919 0.1610 0.1558-0.1816
VMULT72 1733 0.1829* 0.1554-0.1825
VMULT72 2635 0.1283* 0.1578-0.1802
VMULT72 9139 0.1459* 0.1616-0.1759
VMULT36 3003 0.0493 0.0456-0.0665
LSFR72 1069 0.0496 0.0349-0.0684
*outside interval

Table 3.8: Posterior Predictive Checks Using Data from the First Accelerator Visit

3.8 Posterior Distribution Summaries

One of the goals of the analysis is to determine how the data has updated our

beliefs about the model discrepancy parameter. Figures 3.4 and 3.5 overlay the prior

and posterior distributions for both β1 and τ 2. The data from the proton accelerator

is limited but we are able to significantly reduce our uncertainty about the magnitude

of the bias. Our beliefs about τ 2, the model discrepancy variance, are updated by the

data and the estimate of the magnitude of τ 2 is decreased.

Another posterior summary of interest is how the data has updated our beliefs

about κ2
i , the sampling error variance associated with the proton accelerator data for

each design. Figure 3.6 plots the posterior distributions of the four variance terms.
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Figure 3.7 overlays all four plots on the same graph for comparison. The updated

estimates of the sampling error variance will be important in prediction. Note that

the estimated sampling error is smallest for the Synthetic No TMR design. The large

amount of data available for this design probably allows for a more accurate estimate

of the sampling error. For the Counter and the Multiplier designs, where we only have

two replicates, the prior seems to have dominated in producing the final estimate of

the measurement error.
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Figure 3.4: Prior and Posterior Distributions for β1

3.9 Model Prediction

3.9.1 Posterior Predictive Distribution of ε, the Model Discrepancy

The magnitude of the discrepancy ε between the simulator and accelerator

can be expressed in the form of a posterior predictive distribution. According to the

model, the discrepancy term is normally distributed with mean β1X and variance
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Figure 3.5: Prior and Posterior Distributions for τ 2
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Figure 3.6: Posterior Distributions for the κ Parameters

τ 2. The posterior distributions for β1 and τ 2 can be used to generate a predictive

distribution of the bias for each design. The posterior predictive distribution for the

discrepancy term given the data can be expressed as

f(ε|z) = f(ε|β1, τ
2)π(β1, τ

2|z).
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Figure 3.7: Posterior Distributions for the κ Parameters - Overlay

Each design will have a unique mean for its predictive distribution according to the

number of flip flops present in the design. The four predictive distributions are shown

in Figure 3.8, and 95% HPD credible intervals for the discrepancy estimated for each

design are listed in Table 3.9. None of the predictive intervals for the discrepancy term

include zero. This provides evidence of a systematic positive discrepancy between the

simulator and accelerator sensitivity estimates.

Design Mean 95% HPD Interval for the Discrepancy
Multiplier 0.0146 0.00984-0.0190
Counter 0.00941 0.00534-0.0137
Snapshot Recorder 0.00900 0.00478-0.0132
Synthetic No TMR 0.00710 0.00301-0.0113

Table 3.9: Estimate of the Discrepancy Between the Simulator and The Accelerator
for 4 Designs
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Figure 3.8: Distribution of the Discrepancy Term for Each Design

3.9.2 95% Credible Intervals for Design Behavior at Next Accelerator

Testing

By computing the posterior predictive distribution for zi(j+1), we can predict

the average sensitivity we would expect to see at the next proton accelerator test. The

predictions are made conditional on observing the following numbers of upsets at the

accelerator: 1,000, 5,000, and 10,000. This can be done for an existing design or for a

design that has not been previously tested in a ground-based radiation environment.

The posterior predictive distribution for the ith existing design with a sample size of

Mi(j+1), can be written as

f(zi(j+1)|z) = f(zi(j+1)|β1, τ
2, κ2

i )π(µ, τ 2, κ2
i |z).
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The posterior predictive distribution for a new design is similarly expressed as

f(znew|z) = f(znew|β1, τ
2, α, β)π(µ, τ 2, α, β|z).

Here we take advantage of the hierarchical model specification for the measurement

error of the new design κ2
new, which, as specified, is distributed as GAM(α, β). Ta-

ble 3.10 lists the design names, simulator value, and 95% HPD credible intervals for

the four existing designs and a new, hypothetical design at desired sample sizes. The

new design has the following characteristics: a simulator sensitivity of 0.0772 and

14,235 flip flops utilized in the design.

Simulator
Design Value 1,000 5,000 10,000
Multiplier 0.0889 0.0866-0.1200 0.0947-0.1116 0.0968-0.1102
Counter 0.0312 0.0250-0.0558 0.0328-0.0483 0.0343-0.0468
Snapshot Recorder 0.0863 0.0763-0.1139 0.0863-0.1047 0.0882-0.1024
Synthetic No TMR 0.0614 0.0569-0.0886 0.0650-0.0809 0.0664-0.0790
New Design 0.0772 0.0739-0.1084 0.0827-0.1001 0.0843-0.0980

Table 3.10: 95% Credible Intervals for Average Sensitivity at the Next Accelerator
Tests

3.9.3 95% Credible Intervals for the True Accelerator Sensitivity

The model also allows us to form HPD intervals for the true accelerator sen-

sitivity - i.e., the accelerator sensitivity without any sampling error. In other words,

now that we have an estimate of the sampling error for each design, we can remove

that uncertainty from the predictions to form an interval of the true accelerator sen-

sitivity. This is done by forming a posterior predictive distribution not for the next

observation zi(j+1), but for the true value yi. From the original model specification
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we know that

yi = Ci + ε.

This implies that

f(yi|β1, τ
2) =

1

(2πτ 2)
1
2

e−
(yi−Ci−β1X)2

2τ2 .

The posterior predictive distribution for the true sensitivity of a design can be written

as f(yi|z) = f(yi|β1, τ
2)π(β1, τ

2|z). As more data is collected, we should be able to

continue to reduce our uncertainty about parameters such as β1 and τ 2. Gaining

better estimates about these parameters will reduce the width of these HPD intervals

(Table 3.11).

Design Simulator Value 95% HPD Interval
Multiplier 0.0889 0.0988-0.1079
Counter 0.0312 0.0365-0.0450
Snapshot Recorder 0.0863 0.0911-0.0995
Synthetic No TMR 0.0614 0.0687-0.0787
New Design 0.0772 0.0846-0.0970

Table 3.11: Credible Intervals for the True Accelerator Sensitivity

3.10 Results Using Adjusted Average Sensitivity Data

This model can be re-fit to the adjusted average sensitivity data. One ques-

tion of interest is how much the algorithm that filters out supposed flip flop errors

is able to reduce the discrepancy between the simulator and the accelerator data. A

positive discrepancy term would indicate that the adjustments made to the accelera-

tor sensitivity results are still conservative and are not able to bring the data sources

completely into agreement. Alternatively, if the algorithm is accurate, than a positive
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discrepancy estimate would indicate that the simulator underpredicts the configura-

tion bit sensitivity seen in accelerator testing. The normal likelihood model is applied

to the adjusted data and 100,000 realizations of the joint posterior distribution are

generated. This data is used to compute new posterior predictive distributions for

the bias for each design.

The four predictive distributions are shown in Figure 3.9. 95% credible inter-

vals for the discrepancy estimated for each design are listed in Table 3.12.
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Figure 3.9: Distribution of the Discrepancy Term for Each Design, Adjusted Data

This data provides a better metric for the validation of the accuracy of the

simulator since there has already been an attempt to remove the bias due to flip flop

errors. When using the adjusted sensitivity numbers, the 95% HPD intervals for the

discrepancy term include zero for only three of the four designs. This provides some
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Design Mean 95% credible interval for the bias
Multiplier 0.00651 (0.00172,0.0108)
Counter 0.00420 (-0.000108,0.00836)
Snapshot Recorder 0.00403 (-0.000289,0.000814)
Synthetic No TMR 0.00317 (-0.000940,0.00727)

Table 3.12: Estimate of the Discrepancy Between the Simulator and The Accelerator
for 4 Designs, Adjusted Data

evidence that the discrepancy between the two sources is eliminated with the adjusted

data. Note, however, that the posterior predictive means for the discrepancy term are

still positive. If the posterior means were closer to zero, the evidence of a complete

removal of the discrepancy between the two data sources would be more compelling.

Because this data is adjusted, it is not as useful for predicting actual design

behavior at the accelerator, where flip flop errors are expected to occur.
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Chapter 4

Fitting the Stochastic Simulator Model

If the output from the simulator is treated as stochastic, the likelihood must

be specified differently. Instead of modeling the difference between the simulator and

accelerator data, the data from both sources is modeled jointly. Let z be a vector of

observations (y, x) where y represents the data from the accelerator and x represents

the data from the simulator. Let the likelihoods of y and x be denoted by f(y|θ1)

and f(x|θ2), where θ1 and θ2 are vectors of parameters. Some of the elements of θ1

and θ2 will be the same; the parameters that are common to both likelihoods allow

us to relate the data from both systems. The parameters shared by both likelihoods

are chosen such that the data (y, x) are independent conditional on these shared

parameters. The likelihood of z then becomes:

f(z|θ1, θ2) = f(y|θ1)f(x|θ2).

This type of model can be used whenever the simulator output is stochastic.

It can also be used for the case of a deterministic simulator where the simulator and

accelerator output are not measured at the same levels, making explicit modeling of

the difference between the two sources impossible. This joint modeling is described in
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detail in Goldstein and Rougier (2004). To illustrate how to fit this type of model we

again use the FPGA design data. Since the simulator data is treated as stochastic and

requires a separate likelihood specification, we do not rely on the normal distribution

for a likelihood as in the deterministic model. The data from the simulator is likely

to be correlated since we observe data at neighboring locations; therefore, the average

sensitivity at the simulator is a sum of dependent random variables and cannot be

assumed to be approximately normal under the Liapounov Central Limit Theorem.

4.1 Data from Accelerator Testing

The raw data from accelerator testing is in the form of counts rather than

proportions. Table 4.1 shows the number of design failures yij (both adjusted and

unadjusted) for the j replicates of the i designs. It also lists mij, the total number

of locations upset. The results presented in this section are based on the unadjusted

counts of design failures unless otherwise specified.

4.2 Data from the Fault Injection Simulator

Since the simulator in this model is not treated as deterministic, for each design

we have replicates of the number of design failures observed using the simulator. The

total number of locations tested (M), is held constant at 290,501,200 for each trial, as

each of the 5,810,024 individual configuration bits is tested 50 times with a randomly

selected input vector. This is repeated two or three times for each design. The data

from the simulator is shown in Table 4.2. This data is aggregated in the deterministic

model to produce the proportions listed in Section 3.2.
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Design Total Bits Upset (m) Design Failures (y) Adjusted Design Failures
Multiplier 4634 460 419
Multiplier 1293 137 124
Counter 1050 42 41
Counter 10036 413 392
Counter 9982 378 361
Snapshot Recorder 1909 187 173
Snapshot Recorder 5096 507 477
Snapshot Recorder 4307 424 398
Snapshot Recorder 10069 974 924
Snapshot Recorder 14953 1440 1364
Snapshot Recorder 5029 467 443
Snapshot Recorder 8893 857 811
Snapshot Recorder 34 4 4
Snapshot Recorder 2823 250 231
Snapshot Recorder 559 70 64
Snapshot Recorder 95 5 5
Snapshot Recorder 167 12 10
Snapshot Recorder 317 20 19
Snapshot Recorder 6135 612 574
Snapshot Recorder 924 95 87
Snapshot Recorder 5726 549 510
Snapshot Recorder 12641 1210 1143
Snapshot Recorder 719 67 65
Snapshot Recorder 2030 174 166
Snapshot Recorder 1274 98 94
Snapshot Recorder 1569 143 134
Snapshot Recorder 236 22 22
Snapshot Recorder 1957 180 171
Snapshot Recorder 4194 370 347
Snapshot Recorder 595 57 54
Snapshot Recorder 5196 488 464
Snapshot Recorder 328 31 29
Snapshot Recorder 571 60 55
Snapshot Recorder 371 36 36
Snapshot Recorder 8075 789 747
Snapshot Recorder 14309 1383 1296
Snapshot Recorder 1659 168 153
Snapshot Recorder 4001 351 323
Synthetic No TMR 106 6 6
Synthetic No TMR 3812 303 282
Synthetic No TMR 2372 176 168
Synthetic No TMR 4736 359 335
Synthetic No TMR 8929 670 632
Synthetic No TMR 1793 133 125
Synthetic No TMR 501 29 28
Synthetic No TMR 634 42 39
Synthetic No TMR 2698 204 195
Synthetic No TMR 489 39 34
Synthetic No TMR 2219 152 146
Synthetic No TMR 1065 87 81
Synthetic No TMR 9787 727 682
Synthetic No TMR 1466 91 88

Table 4.1: Design Failures at the Accelerator

4.3 Specification of the Likelihood

Since the data is in the form of successes in a certain number of trials, it is

natural to use a binomial likelihood to fit the data. Let z be a vector of observations

(y, x) where y represents the data from the accelerator and x represents the data from

the simulator. We express the kernel of the likelihood for an observation yij of mij

trials from the accelerator as

f(yij|πi) ∝ exp

(
yij log

πi

1− πi

+ mij log(1− πi)

)
.
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Design Total Bits Upset (M) Design Failures (x)
Multiplier 290,501,200 25,308,206
Multiplier 290,501,200 25,775,373
Multiplier 290,501,200 25,780,362
Counter 290,501,200 9,635,835
Counter 290,501,200 8,777,447
Counter 290,501,200 8,776,247
Snapshot Recorder 290,501,200 25,106,702
Snapshot Recorder 290,501,200 25,045,368
Snapshot Recorder 290,501,200 25,044,093
Synthetic No TMR 290,501,200 19,049,461
Synthetic No TMR 290,501,200 19,105,479

Table 4.2: Design Failures Recorded with the Fault Injection Simulator

The binomial trials observed at the simulator may exhibit a degree of corre-

lation. At the simulator we observe data at all locations in the design. Neighboring

locations are often part of the same structure on the FPGA; therefore, the behav-

ior of neighboring locations is expected to be correlated. Correlated binomial trials

can often exhibit overdispersion (Kupper et al. 1986). We express the kernel of the

likelihood for an observation xij of M trials from the simulator as

f(xij|pi) ∝ exp

(
xij log

pi

1− pi

+ M log(1− pi)

)
.

To reflect the additional variance in the data we add a measurement error term

in the mean structure of the likelihood. The model for the mean of the simulator is

written as

log
pij

1− pij

= µi + γij

where µi is the logit of the average sensitivity due only to configuration bits for the

ith design and γij is the measurement error term. Here j is a pseudo-level added to

model the extra variance for each observation, as described in Browne et al. (2005). In
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this model the parameters γij are assumed to follow a normal distribution with mean

zero and variance σ2
d. Under this assumption, the simulator provides an unbiased

estimate of the average sensitivity due only to configuration bits. This assumption is

consistent with expert opinion about the behavior of the simulator.

The measurement error terms γij can also be referred to as overdispersion

parameters. Browne et al. (2005) discusses in detail this method of modifying the

binomial likelihood by incorporating additive dispersion in the mean structure. The

addition of this parameter improves the overall fit of the model by allowing for a

flexible relationship between the estimated means and variances of the number of

design failures. If the overdispersion were ignored, resulting estimates would not

reflect the actual uncertainty in the simulator data.

The relationship between the simulator and the accelerator data for the ith

design is specified through the common parameter µi found in the structure placed

on the mean of each likelihood. For the accelerator the relationship is expressed as

log
πi

1− πi

= µi + β1wi + λ.

Here µi is defined as discussed in the model for the simulator, wi represents the

proportion of flip flops for the ith design, β1 controls the amount of discrepancy

between the accelerator estimate and the simulator sensitivity due to flip flops, and

λ estimates any other systematic discrepancy between the accelerator estimate and

the simulator value that cannot be explained by the number of flip flops. Under this

model, the average sensitivity estimated at the accelerator depends upon the average

sensitivity due only to configuration bits, µi, but is allowed to vary from that value
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through the parameters β1 and λ.

The joint likelihood for all the data z can be expressed as the product of the

likelihoods for each individual observation. By substituting the regression relationship

for the logit of πi and pi into the likelihood the kernel becomes

f(yij, xij|µi, β1, λ, γij) ∝ Π4
i Π

ni
j exp

(
yij(µi + β1wi + λ)−mij log(1 + expµi+β1wi+λ)

)
Π4

i Π
qi

j exp
(
xij(µi + γij)−M log(1 + expµi+γij)

)
.

4.4 Elicitation of Prior Distributions and Hyperparameters

The parameter µi, the logit value of the ith design configuration bit sensitivity,

is modeled hierarchically, where the µi ∼ N(θ, τ 2). The hierarchical parameters θ

and τ 2 are modeled as follows:

θ ∼ N(m, v2)

τ 2 ∼ INV GAM(a, b).

The parameters β1 and λ are defined such that

β1 ∼ N(mβ, v2
β)

λ ∼ N(mλ, v
2
λ).

Finally, the measurement error parameters γij are modeled as

γij ∼ N(0, σ2
d).

The prior distribution for the overdispersion variance term σ2
d is specified as an inverse-

gamma distribution with hyperparameters ad and bd.

47



www.manaraa.com

This model requires the specification of hyperparameter values for λ, θ, τ 2,

β1, and σ2
d. Since the model uses the logistic function when modeling the mean, the

hyperparameters need to be chosen to reflect the transformed scale. Since a priori

Dr. Wirthlin believes that no bias exists at the accelerator that is unexplained by

the presence of flip flops, the model term that would capture any such bias, λ, is

given a prior mean of zero. Choosing the magnitude of the variance is difficult due

to the logit transformation of the average sensitivity. The variance is initially set to

0.04. This should make the prior flat enough to reflect the uncertainty associated

with these terms and allow for a significant updating of prior beliefs due to the data.

To specify a mean for θ, the hierarchical mean parameter, we use moment

matching and transform to the logit scale. We assume that the average sensitivity for

the population of typical FPGA designs is 0.07. The mean for θ is then log(0.07
0.93

). To

specify the variance of this hierarchical mean, we assume the mean of the population

of all designs falls in the interval (0.05,0.09), and estimate the prior variance as

((
log(

0.09

0.91
)− log(

.05

.95
)

)
/6

)2

.

This formula is motivated from properties of the normal distribution; the normal dis-

tribution captures the range of most probable values in six standard deviations. This

same formula is used in combination with moment matching to calculate the hyper-

parameters for τ 2, except that it is augmented to reflect the additional uncertainty

when considering the variance of the average sensitivity across all designs instead of

the variance of the mean. Table 4.3 is a listing of the exact hyperparameter values

used for all parameters.
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As in Section 3.4, the hyperparameters chosen for the slope parameter β1 reflect

Dr. Wirthlin’s belief that the bias due to flip flops falls between 1 and 2 percent;

however, this statement must be transformed to have meaning in logit space. The

range of reasonable values for β1 is determined by solving for the parameter under

a number of proposed average sensitivities, such that the increase due to flip flops

ranges between 0 and 0.03.

The hyperparameters for the overdispersion variance parameter σ2
d are partic-

ularly hard to specify. The magnitude of the variance is set to be much larger than

the mean to reflect the uncertainty associated with this parameter. The influence of

the hyperparameters on the posterior estimates is examined in Section 4.4.1.

Parameter Distribution Hyperparameter Value
λ Normal mλ 0
λ Normal v2

λ 0.04
θ Normal m -2.59
θ Normal v2 0.011
τ 2 Inverse-Gamma a 2.022
τ 2 Inverse-Gamma b 0.045
β1 Normal mβ 225
β1 Normal v2

β 5500
σ2

d Inverse-Gamma ad 2.2*
σ2

d Inverse-Gamma bd 0.12*
*modified in Section 4.4.1

Table 4.3: Listing of All Hyperparameters

4.4.1 Sensitivity Analysis for σ2
d

While it is clear that the simulator data should manifest overdispersion, it is

difficult to determine the magnitude of the parameter σ2
d because of the logit trans-
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formation applied to the mean of the likelihood. It is important to select a prior

that provides a true reflection of our uncertainty with respect to this parameter. The

model estimates under the original prior specification are compared to estimates using

two alternative priors. In the alternative priors, the hyperparameters are adjusted

to decrease the prior mean and increase the prior variance. For an inverse-gamma

distribution with parameters α and β the mean is defined to be β
α−1

and the variance

is defined as β2

(α−1)2(α−2)
. Table 4.4 shows how the posterior mean and variance of

σ2
d change for the three different prior specifications. The magnitude of the prior

mean has a high influence in determining the magnitude of the posterior mean in

the first prior specification. The original specification constrains estimates of σ2
d to

be higher than the under the two alternative priors. This causes a marked difference

in the width of some of the model predictions. In Table 4.5, the average sensitivity

predictions at the accelerator are highly sensitive to the original model specification.

In contrast, the two alternative priors yield very similar results.

Marginal Posterior Summaries
Prior Distribution Mean of σ2

d Variance of σ2
d

ad = 2.2, bd = 0.12* 2.14× 10−2 8.53× 10−5

ad = 2.0002, bd = 0.010002 2.49× 10−3 1.27× 10−6

ad = 2.000002, bd = 0.001000002 7.79× 10−4 1.23× 10−7

*original prior

Table 4.4: Posterior Mean and Variance for σ2
d Under Three Proposed Priors

Since we do not have definitive prior information about σ2
d, it is undesirable to

constrain the posterior estimates to be large by using a prior mean that is too high.

In order to avoid using a prior that is too influential, the original hyperparameters
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Prior Distribution Design 95% HPD Interval
ad = 2.2, bd = 0.12* Multiplier 0.0970-0.1114
ad = 2.0002, bd = 0.010002 Multiplier 0.0986-0.1114
ad = 2.000002, bd = 0.001000002 Multiplier 0.0983-0.1107
ad = 2.2, bd = 0.12* Counter 0.0361-0.0407
ad = 2.0002, bd = 0.010002 Counter 0.0349-0.0378
ad = 2.000002, bd = 0.001000002 Counter 0.0348-0.0367
ad = 2.2, bd = 0.12* Snapshot Recorder 0.0939-0.0971
ad = 2.0002, bd = 0.010002 Snapshot Recorder 0.0945-0.0975
ad = 2.000002, bd = 0.001000002 Snapshot Recorder 0.0948-0.0977
ad = 2.2, bd = 0.12* Synthetic No TMR 0.0717-0.0766
ad = 2.0002, bd = 0.010002 Synthetic No TMR 0.0715-0.0760
ad = 2.000002, bd = 0.001000002 Synthetic No TMR 0.0712-0.0752
*original prior

Table 4.5: 95% HPD Intervals for True Accelerator Sensitivity Under Three Proposed
Priors for σ2

d

are modified to ad = 2.0002 and bd = 0.010002. Unless otherwise specified, these will

be the hyperparameters for σ2
d used for model estimation.

4.5 Implementation of MCMC methods of estimation

The above model specification requires the use of Metropolis-Hastings methods

of estimation nested within the Gibbs sampler for posterior simulation. For increased

computational efficiency we reparametrize part of the model involving the likelihood

for the simulator. Let µ∗ij = µi +γij. Under this reparametrization the prior π(µ∗ij|µi)

is a normal distribution with mean µi and variance σ2
d. The mean of the simulator

likelihood can then be written as

log
pij

1− pij

= µ∗ij.
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This parametrization is used to implement Gibbs sampling and Metropolis-Hastings

estimation. This type of reparametrization is known as hierarchical centering and is

discussed for this type of binomial-logit model in Browne et al. (2005). The complete

conditionals for each parameter form part of Gibbs sampler used to generate draws

from the joint posterior distribution. The kernels of the complete conditionals (or

closed forms where available) for each parameter are listed below:

[µi] ∝ Πni
j exp

(
yij(µi + β1wi + λ)−mij log(1 + expµi+β1wi+λ)

)
× exp

(
−(µi − θ)2

2τ 2

)
exp

(
−

Σ(µ∗ij − µi)
2

2σ2
d

)
[θ] ∼ N

(
Σµi × v2 + m× τ 2

τ 2 + N × v2
,

τ 2v2

N × v2 + τ 2

)
[τ 2] ∼ INV GAM

(
N/2 + a,

Σ(µi − θ)2

2
+ b

)
[β1] ∝ ΠN

i Πni
j exp

(
yij(µi + β1wi + λ)−mij log(1 + expµi+β1wi+λ)

)
exp

(
−(β1 −mβ)2

2v2
β

)

[λ] ∝ ΠN
i Πni

j exp
(
yij(µi + β1wi + λ)−mij log(1 + expµi+β1wi+λ)

)
exp

(
−(λ−mλ)

2

2v2
λ

)
[µ∗ij] ∝ ΠN

i Πni
j exp

(
xij(µ

∗
ij)−M log(1 + expµ∗ij)

)
exp

(
−

(µ∗ij − µi)
2

2σ2
d

)
[σ2

d] ∼ INV GAM

(
11/2 + ad,

ΣΣ(µ∗ij − µi)
2

2
+ b

)
.

4.6 Assessing Model Convergence

Five hundred and fifty thousand realizations from the posterior distribution of

each of the parameters are generated after appropriately tuning the MCMC simulation

algorithm. Figures 4.1 and 4.2 show time series plots of every hundredth realization

of the first 300,000 realizations. The first 199,999 posterior realizations are discarded
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as burn-in. The logistic structure in the likelihood of the model adds difficulty to the

convergence of the algorithm and requires a large number of realizations to assure

convergence.
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Figure 4.1: Convergence Plots for β1, λ, and σ2
d
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Figure 4.2: Convergence Plots of µi for the Four Designs
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4.7 Assessing Goodness-of-fit

The data for three designs tested in an earlier session at the accelerator is

again used as hold-out data in a cross-validation analysis. A test at the simulator is

available for each design; the data can be found in Johnson (2005). The results of

this testing are shown in Table 4.6.

Design Total Locations Tested Observed Output Errors
VMULT72 2,324,011,200 357,898,191
VMULT36 581,002,440 25,031,616
LSFR72 581,002,440 30,446,011

Table 4.6: Results from Simulator Testing for the 3 Hold-out Designs

Conditional on the data from the simulator, we will to predict the behavior of

these designs at the accelerator and compare the predictions to the observed values.

The sample sizes of the simulator testing for each of these designs is different than

the sample sizes used to fit the model. The performance of the model in predicting

for these new designs gives an idea of how the simulator performs in predicting not

only for a new design, but also for a different number of simulator runs.

Table 4.6 shows the 95% equal-tailed prediction intervals for the behavior of

each of the designs tested in the earlier session at the accelerator with the corre-

sponding observed value and sample size. The methods to generate these intervals

are described in more detail in Section 4.9. Note that six of the eight observations

fall within the prediction intervals. The model seems to give good predictions even

when using different sample sizes at the fault injection simulator.
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Design N Observed Errors 95% Equal-Tailed Interval
VMULT72 57 12 5-16
VMULT72 5754 992 932-1172
VMULT72 1919 309 303-399
VMULT72 1733 317 272-362
VMULT72 2635 388* 420-544
VMULT72 9139 1333* 1488-1853
VMULT36 3003 148 112-167
LSFR72 1069 53 48-80
*outside interval

Table 4.7: Posterior Predictive Checks Using Data from the First Accelerator Visit

4.8 Posterior Distribution Summaries

An examination of the marginal posterior distributions of several of the para-

meters allows us to assess how the data updates our prior beliefs about the accelerator

discrepancy terms. The marginal posterior distributions of λ and β1 allow us to assess

the magnitude of the discrepancy between the average sensitivity at the accelerator

and the average sensitivity due only to configuration bit errors on the logit scale.

The prior and posterior distributions of these discrepancy parameters are shown in

Figures 4.3 and 4.4 respectively.

We can use the posterior realizations of λ and β1 to plot posterior distribu-

tions of the discrepancy at the accelerator for each of the four designs. The posterior

distributions of the total discrepancy β1wi + λ are shown in Figure 4.5. Zero is not

included as a probable value for the discrepancy for any of the designs. This is evi-

dence of the existence of an overall systematic discrepancy between the simulator and

the accelerator. The posterior distribution for λ includes zero with a high probability

and the posterior distribution of β1 includes zero with a low probability, indicating
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Figure 4.3: Posterior Distribution for λ
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Figure 4.4: Posterior Distribution for β1

that the overall discrepancy between the two sources is most likely due to design flip

flops and not to some other unknown source of bias.

The posterior distribution of σ2
d allows us to assess the magnitude of the mea-

surement error variance in the simulator data. Figure 4.6 plots both the prior and
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Figure 4.5: Posterior Distributions for the Total Discrepancy β1wi + λ

posterior distributions of the overdispersion variance. The data has allowed us to

significantly reduce our prior uncertainty about this quantity. For comparison, the

posterior variance of λ is 0.0031 and the posterior mean of σ2
d is 0.0025. This compar-

ison enables us to examine the relative precision of the accelerator and simulator data

in estimating the average sensitivity. The estimates are very similar in magnitude.

Although we get better coverage of the total number of locations and input vectors

at the simulator, the presence of correlation among neighboring locations offsets the

gain in precision that would be seen under independence.

The posterior realizations of µi for the ith design are transformed to

exp(µi)

1 + exp(µi))

to give posterior distributions for the average sensitivity due only to configuration

bits as jointly estimated by the accelerator and the simulator. Figure 4.7 shows these

distributions for each of the four designs included in the analysis and Table 4.8 lists
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Figure 4.6: Prior and Posterior Distribution for σ2
d

the corresponding 95% HPD intervals.
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Figure 4.7: Posterior Distributions of the Configuration Bit Sensitivity for the Four
Designs

We find the posterior distribution for the true average sensitivity observed

at the accelerator (which would include flip flop errors and any other bias due to
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Design 95% HPD Credible Interval
Multiplier 0.0851-0.0903
Counter 0.0308-0.0328
Snapshot Recorder 0.0829-0.0870
Synthetic No TMR 0.0643-0.0688

Table 4.8: Credible Intervals for the Average Sensitivity Due to Configuration Bits

accelerator testing) for the ith design by transforming the posterior realizations of

µi + β1wi + λ to

exp(µi + β1wi + λ)

1 + exp(µi + β1wi + λ))
.

The posterior distributions for this quantity for each design are shown in Figure 4.8;

Table 4.9 lists the corresponding 95% HPD intervals. The posterior distribution for

the Multiplier design, which has the least amount of accelerator data, is the least

precise.
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Figure 4.8: Posterior Distributions of the Accelerator Sensitivity for the Four Designs

59



www.manaraa.com

Design 95% HPD Credible Interval
Multiplier 0.0986-0.1114
Counter 0.0349-0.0378
Snapshot Recorder 0.0944-0.0975
Synthetic No TMR 0.0715-0.0760

Table 4.9: Credible Intervals for the True Accelerator Sensitivity

4.9 Model Prediction

Since the simulator testing is much easier to perform, a statistical model com-

paring the two systems is especially useful if we can gain information about accelerator

testing using only simulator data. We want to predict the sensitivity due to configu-

ration bits using only fault injection data. We also want to predict the behavior of a

design at the accelerator given data at the simulator as was done for the determinis-

tic model. The stochastic simulator model allows us to compute posterior predictive

distributions for both of these quantities. We consider the same hypothetical design

presented in Section 3.9.2. This design has 14,235 flip flops; in simulator testing

22,426,693 output errors were observed in 290,501,200 trials, which corresponds to an

observed average sensitivity of 0.0772.

We use the observation from the simulator for the new design to estimate

µnew|xnew. We know from Sections 4.3 and 4.5 that the likelihood kernel for xnew in

its reparametrized form is

exp (xnew(µ∗new)−M log(1 + exp(µ∗new))) .

Using the Metropolis-Hastings algorithm and this likelihood kernel we generate real-

izations from π(µ∗new|xnew). By definition µnew = µ∗new − γnew. Using the posterior
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distribution of σ2
d we generate the posterior predictive distribution for γnew|z by gen-

erating from f(γnew|σ2
d)π(σ2

d|z). We subtract the realizations of γnew from the realiza-

tions of µ∗new to get posterior predictive realizations for µnew|xnew. These realizations

are used to predict the average sensitivity due to configuration bits and to predict

the behavior of this design at the accelerator.

As discussed in Section 4.8, the distribution of the average sensitivity due to

configuration bits is estimated by transforming the posterior realizations of µnew to

exp(µnew)

1 + exp(µnew))
.

To predict the average sensitivity at the accelerator we transform µnew + β1wnew + λ

to

exp(µnew + β1wnew + λ)

1 + exp(µnew + β1wnew + λ))
.

Type 95% HPD Credible Interval
Average Sensitivity from Configuration Bits 0.0702-0.0843
Average Sensitivity at the Accelerator 0.0831-0.1047

Table 4.10: Prediction Intervals for a Hypothetical New Design

Using this model we can predict the counts of output errors we would expect

to see at the next accelerator test for a given design and sample size. To predict

the expected counts for design i given a sample of size 1,000, we simulate from the

posterior predictive distribution

f(yi(j+1)|µi, β1, λ)π(µi, β1, λ|z).

This is equivalent to simulating from a binomial likelihood with n=1,000 and vector
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of probabilities

exp(µi + β1wi + λ)

1 + exp(µi + β1wi + λ)
,

where the parameters are substituted with their respective vectors of posterior real-

izations. To predict counts for the new design we replace the posterior realizations

µi with the posterior predictive realizations of µnew|xnew.

Table 4.11 lists 95% equal-tailed credible intervals for the predicted counts for

the four designs in the model and the hypothetical new design described earlier.

Design 1,000 5,000 10,000
Multiplier 85-126 473-578 963-1139
Counter 25-49 155-209 325-404
Snapshot Recorder 78-115 439-522 900-1020
Synthetic No TMR 58-91 331-407 682-794
New Design 74-116 404-539 820-1065

Table 4.11: 95% Equal-Tailed Credible Intervals for Output Errors Observed at the
Next Accelerator Tests

4.10 Results Using Adjusted Average Sensitivity Data

The stochastic model is re-fit using the adjusted counts in order to see how

the estimates of the discrepancy term change. A total discrepancy that includes zero

with high probability would validate the effectiveness of the algorithm used at the

accelerator to filter out flip flop errors. Three hundred and fifty thousand realizations

of the joint posterior distribution are generated after burn-in. The posterior realiza-

tions are used to plot posterior distributions for the discrepancy parameters λ and β1

(Figures 4.9 and 4.10), and for the total discrepancy for each design β1wi + λ (Fig-

ure 4.11). The 95% HPD intervals for the total discrepancy are shown in Table 4.12.
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The marginal posteriors of both discrepancy components λ and β1 include zero as

a probable value using the adjusted data; both have shifted to the left as compared

to the unadjusted results. The total discrepancy, however, does not include zero in

the 95% HPD interval for any of the four designs. In contrast to the adjusted data

results using the deterministic simulator model, the results under this model provide

evidence of a discrepancy term even after using the adjusted data.

Two possible sources of the remaining discrepancy are failure of the algorithm

to identify all flip flop errors and underprediction of the average sensitivity by the

simulator. An incomplete identification of flip flop errors by the algorithm would

reduce but not eliminate the discrepancy between configuration bit and accelerator

sensitivity. If the algorithm is accurate in removing all flip flop errors at accelerator

testing, then these results indicate that the simulator is underpredicting the sensitivity

due to configuration bits. The assumption that the simulator is an unbiased estimator

of errors would then be rejected.

Design 95% HPD credible interval for the bias
Multiplier 0.0406-0.1855
Counter 0.0419-0.0985
Snapshot Recorder 0.0396-0.0957
Synthetic No TMR 0.0133-0.0871

Table 4.12: Estimate of the Discrepancy Between the Simulator and the Accelerator
for Four Designs, Adjusted Data
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Figure 4.9: Posterior Distribution for λ, Adjusted Data
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Figure 4.10: Posterior Distribution for β1, Adjusted Data
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Figure 4.11: Distribution of the Total Discrepancy Term for Each Design, Adjusted
Data
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Chapter 5

Summary

The deterministic and stochastic simulator models use very different likeli-

hoods and make some different modeling assumptions. While it is difficult to say

which type of model is uniformly best, there are certain advantages and disadvan-

tages to each approach. Whether the general deterministic or stochastic model should

be used depends on the individual application area.

One possible research consideration when selecting a model is the importance

of simplicity in interpretation and estimation. A deterministic simulator model is

generally easier to understand and estimate because the field data provides the only

source of randomness. In the FPGA example, when no probabilistic modeling of the

simulator data is required, the problem is simplified and a normal likelihood can be

used. This reduces the complexity of the Bayesian computation. Because of the use

of a normal likelihood, the discrepancy term can be modeled on the same scale as

the average sensitivity, so its magnitude is straightforward to interpret. Finally, it is

simpler to make predictions conditional on the simulator output since the output is

treated as a constant.

It is important to balance the desire for simplicity against the accuracy and
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fit of the model. The estimates from both models are remarkably similar given their

different structure and likelihood assumptions. Under both models, as expected, there

is strong evidence of a positive discrepancy term which indicates that the proton

accelerator data overestimates the configuration bit sensitivity, as seen in Figures 3.8

and 4.5. The models also concur on estimates for the true average sensitivity at

the accelerator (Tables 3.11 and 4.9) and the design behavior at future accelerator

testing (Tables 3.10 and 4.11). The prediction intervals from the deterministic model

tend to be more precise. Since the deterministic model does not account for any

uncertainty associated with the output from the fault injection simulator, this result

is not surprising. If the stochastic component of the simulator is negligible, the

simplicity of the deterministic model and the accuracy of its predictions for a new

design would make it the better choice. If the stochastic component is considered

relatively large, the more realistic incorporation of uncertainty justifies using the

stochastic model.

Another consideration when choosing a general model is the ability to make

good modeling assumptions within the application area. If choosing a likelihood that

appropriately models the simulator data makes the model overly complex or poor-

fitting as compared to selecting a likelihood for the field data, a deterministic model

may be preferred. In the FPGA example, the Liapounov Central Limit Theorem

motivates the use of a fairly simple likelihood for the accelerator data; however, the

invocation of the theorem is harder to justify for smaller sample sizes. The limited

data also makes precise estimation of the measurement error parameters impractical

for the Multiplier and Counter designs. Finding an appropriate likelihood for the
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simulator data is more challenging due to the correlation and overdispersion in the

data. But despite the complexity of the binomial likelihood specification and logit

link function, the model performs well in predictions and is more flexible than the

deterministic model. For example, unlike the deterministic model, the stochastic

model is able to pool data from both the accelerator and the simulator to get an

estimate of the average sensitivity due only to configuration bits, as reported in

Table 4.8. Were the binomial likelihood to provide a poor fit for either the accelerator

or the simulator data, the deterministic model would be a better overall model choice.

Since we are able to make better modeling assumptions for the simulator data, the

stochastic model seems to be the best choice for the FPGA data.

There are other criteria that could be used to evaluate both types of models

depending on the application area. These include considerations such as the relative

time and cost of gathering field data versus generating simulator data, the end-users

of the model estimates, and desired types of predictions. The considerations that

should be given priority are ultimately motivated by the research environment.
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Chapter 6

Appendix A: RR© Code for the Deterministic Simulator Model

#Sensitive Bits Analysis#

#input the data#

Data<−read.csv(”C:\\book1d.csv”,header=TRUE)

attach(Data)

#Y=vector of accelerator average sensitivity, C=vector of simulator values,

#X=vector of fflops/5810024, M=vector of total ouput errors,#

#Design=vector of design numbers#

#defining functions#

#calculate HPD interval#

interval<−function(data){

ind<−seq(1,round(.05∗length(data)))

yp<−sort(data)

hpd.width<−yp[length(yp)−length(ind)+ind]−yp[ind]

ind[hpd.width==min(hpd.width)]

hpd<−c(yp[ind[hpd.width==min(hpd.width)]],

yp[length(yp)−length(ind)+ind[hpd.width==min(hpd.width)]])

return(hpd)

}
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#prediction of the next observation at the accelerator, given a certain number of observations#

preddata<−function(ind,nobs){

data<−rnorm(length(beta),C[ind]+beta∗X[ind],sqrt(k[,Design[ind]]/nobs+t))

return(data)

}

#prediction for a new design#

prednew<−function(fflops,sim,nobs){

ratio<−fflops/5810024

data<−rnorm(length(beta),sim+beta∗ratio,sqrt(rgamma(length(beta),a,b)/nobs+t))

return(data)

}

#prediction of the true accelerator sensitivity for existing designs#

predtrue<−function(ind){

data<−rnorm(length(beta),C[ind]+beta∗X[ind],sqrt(t))

return(data)

}

#prediction of true accelerator sensitivity for a new design#

predtruenew<−function(fflops,sim){

ratio<−fflops/5810024

data<−rnorm(length(beta),sim+beta∗ratio,sqrt(t))

return(data)

}

#specifying prior distributions#

#prior parameters#

#t#

mean<−.00001
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var<−.00000000006

tb<−mean/var

ta<−tb∗mean

x<−seq(0,.00002,len=1000)

test<−dgamma(x,ta,rate=tb)

plot(x,test)

#k#

mean<−.9∗.1

var<−.002

kb<−mean/var

ka<−kb∗mean

x<−seq(0,1,.001)

test<−dgamma(x,ka,rate=kb)

plot(x,test)

#b#

mean<−kb

var<−5

bb<−mean/var

ba<−bb∗mean

x<−seq(0,100,.1)

test<−dgamma(x,ba,rate=bb)

plot(x,test)

#a#

mean<−ka

var<−1

ab<−mean/var

aa<−ab∗mean
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x<−seq(0,10,.1)

test<−dgamma(x,aa,rate=ab)

plot(x,test)

a.tau<−ta

b.tau<−tb

mean.beta<−10

var.beta<−25

x<−seq(−5,20, len=1000)

plot(x,dnorm(x,mean.beta,sqrt(var.beta)),type=’l’)

a.a<−aa

a.b<−ab

b.a<−ba

b.b<−bb

#complete conditionals#

lcck<−function(k,t,beta,a,b,id){−1/2∗sum(log(k/M[Design==id]+t))−sum((Y[Design==id]

−C[Design==id]−beta∗X[Design==id])ˆ2/2/(k/M[Design==id]+t))+(a−1)∗log(k)−b∗k}

lcct<−function(krep,t,beta){−1/2∗sum(log(krep/M+t))−

sum((Y−C−beta∗X)ˆ2/2/(krep/M+t))+(a.tau−1)∗log(t)−b.tau∗t}

lcca<−function(k,b,a,nd){nd∗a∗log(b)−nd∗∗log(gamma(a))+(a−1)∗sum(log(k))+

(a.a−1)∗log(a)−a.b∗a}

lccb<−function(k,b,a,nd){nd∗a∗log(b)−b∗sum(k)+(b.a−1)∗log(b)−b.b∗b}

lccbeta<−function(krep,t,beta){−sum((Y−C−beta∗X)ˆ2/2/(krep/M+t))−

(beta−mean.beta)ˆ2/2/var.beta}

#Initialize Vectors#

burn<−5000

length<−100000

72



www.manaraa.com

nd<−length(unique(Design))

k<−matrix(.1,ncol=nd,nrow=(length+burn))

t<−numeric()

beta<−numeric()

a<−numeric()

b<−numeric()

#Starting Values#

k[1,1]<−.5

t[1]<−.00001

beta[1]<−5

a[1]<−2

b[1]<−5

candsig.k<−.1

candsig.t<−.000001

candsig.a<−3

candsig.b<−15

candsig.beta<−3

#Gibbs Sampler#

for(i in 2:(length+burn)){

#update for k#

for (j in 1:nd){

k[i,j]<−k[i−1,j]

old<−k[i−1,j]

cand<−rnorm(1,old,candsig.k)

if(cand>0){

llo<−lcck(old,t[i−1],beta[i−1],a[i−1],b[i−1],j)

lln<−lcck(cand,t[i−1],beta[i−1],a[i−1],b[i−1],j)
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uu<−runif(1,0,1)

if(log(uu)<(lln−llo)){k[i,j]<−cand}}

}

k1<−rep(k[i,1],sum(Design==1))

k2<−rep(k[i,2],sum(Design==2))

k3<−rep(k[i,3],sum(Design==3))

k4<−rep(k[i,4],sum(Design==4))

krep<−c(k1,k2,k3,k4)

#update for t#

t[i]<−t[i−1]

old<−t[i−1]

cand<−rnorm(1,old,candsig.t)

if(cand>0){

llo<−lcct(krep,old,beta[i−1])

lln<−lcct(krep,cand,beta[i−1])

uu<−runif(1,0,1)

if(log(uu)<(lln−llo)){t[i]<−cand}}

#update for beta#

beta[i]<−beta[i−1]

old<−beta[i−1]

cand<−rnorm(1,old,candsig.beta)

llo<−lccbeta(krep,t[i],old)

lln<−lccbeta(krep,t[i],cand)

uu<−runif(1,0,1)

74



www.manaraa.com

if(log(uu)<(lln−llo)){beta[i]<−cand}

#update for a#

a[i]<−a[i−1]

old<−a[i−1]

cand<−rnorm(1,old,candsig.a)

if(cand>0){

llo<−lcca(k[i,],b[i−1],old,nd)

lln<−lcca(k[i,],b[i−1],cand,nd)

uu<−runif(1,0,1)

if(log(uu)<(lln−llo)){a[i]<−cand}}

#update for b#

b[i]<−b[i−1]

old<−b[i−1]

cand<−rnorm(1,old,candsig.b)

if(cand>0){

llo<−lccb(k[i,],old,a[i],nd)

lln<−lccb(k[i,],cand,a[i],nd)

uu<−runif(1,0,1)

if(log(uu)<(lln−llo)){b[i]<−cand}}

}

#convergence diagnostics#

par(mfrow=c(2,2))
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plot(a[0:10000],type=’l’)

plot(b[0:10000],type=’l’)

plot(beta[0:10000],type=’l’)

plot(t[0:10000],type=’l’)

plot(k[0:10000,1],type=’l’)

plot(k[0:10000,2],type=’l’)

plot(k[0:10000,3],type=’l’)

plot(k[0:10000,4],type=’l’)

#parameters of interest#

beta<−beta[burn:(length+burn)]

a<−a[burn:(length+burn)]

b<−b[burn:(length+burn)]

t<−t[burn:(length+burn)]

k<−k[burn:(length+burn),]

#plotting posterior distributions#

par(mfrow=c(1,1))

plot(density(beta),xlim=c(−5,20),main=” ”)

x<−seq(−5,20,len=1000)

lines(x,dnorm(x,mean.beta,sqrt(var.beta)),lty=2, type=’l’)

legend(10,.4,c(’Prior’,’Posterior’),lty=c(2,1))

plot(density(t),main=’ ’,ylim=c(0,300000))

x<−seq(0,.00002,len=1000)

test<−dgamma(x,ta,rate=tb)
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lines(x,test,lty=2)

legend(.000014,150000,c(’Prior’,’Posterior’),lty=c(2,1))

#model predictions#

#simulating the posterior predictive distribution of the discrepancy term#

d1<−rnorm(length(beta),X[1]∗beta,sqrt(t))

d2<−rnorm(length(beta),X[3]∗beta,sqrt(t))

d3<−rnorm(length(beta),X[6]∗beta,sqrt(t))

d4<−rnorm(length(beta),X[39]∗beta,sqrt(t))

plot(density(d4),main=” ”, lty=6)

lines(density(d3), lty=2)

lines(density(d2),lty=1)

lines(density(d1),lty=9)

legend(−.01,150,c(’Multiplier’,’Counter’, ’Snapshot’,’Synthetic’),lty=c(9,1,2,6))

interval(d1)

interval(d2)

interval(d3)

interval(d4)

#prediction of behavior at next accelerator tests#

mult<−preddata(1,5000)

interval(mult)

count<−preddata(3,5000)

interval(count)

snap<−preddata(6,5000)

interval(snap)

synth<−preddata(39,5000)
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interval(synth)

new<−prednew(14385,0.0772,5000)

interval(new)

#predictions for hold−out data#

lsfr<−prednew(8640,0.0431,1069)

interval(lsfr)

vmult36<−prednew(3744,0.0524,3003)

interval(vmult36)

vmult72<−prednew(15264,0.1540,57)

interval(vmult72)

vmult72<−prednew(15264,0.1540,5754)

vmult72<−prednew(15264,0.1540,1919)

vmult72<−prednew(15264,0.1540,1733)

vmult72<−prednew(15264,0.1540,2635)

vmult72<−prednew(15264,0.1540,9139)

#prediction of the true accelerator sensitivity#

mult<−predtrue(1)

interval(mult)

count<−predtrue(3)

interval(count)

snap<−predtrue(6)

interval(snap)

synth<−predtrue(39)

interval(synth)
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new<−predtruenew(14385,0.0772)

interval(new)
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Chapter 7

Appendix B: RR© Code for the Stochastic Simulator Model

attach(Counts)

#F=vector of fflops/5810024, X=vector of output errors, N=vector of Total Upsets,#

#Design=vector of design Numbers#

#formatting the data for coding purposes − separating simulator and accelerator data.

#Assumes simulator data is first in all data vectors.#

F<−F[1:52]

XA<−X[1:52]

DesignA<−Design[1:52]

N1<−N[1:52]

XB<−X[53:63]

DesignB<−Design[53:63]

N2<−N[53:63]

#defining functions#

#HPD interval#

interval<−function(data){

ind<−seq(1,round(.05∗length(data)))

yp<−sort(data)
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hpd.width<−yp[length(yp)−length(ind)+ind]−yp[ind]

ind[hpd.width==min(hpd.width)]

hpd<−c(yp[ind[hpd.width==min(hpd.width)]],

yp[length(yp)−length(ind)+ind[hpd.width==min(hpd.width)]])

return(hpd)

}

#equal−tailed interval#

interval1<−function(data){

equaltailed<−quantile(data,c(.025,.975))

return(equaltailed)

}

#predicting for a new design#

prednew<−function(xnew,nnew,fnew){

fnew<−fnew/5810024

out<−numeric()

candsig<−.003

out[1]<−−2.3

for (i in 2:(length+burn)) {

out[i]<−out[i−1]

cand<−rnorm(1,out[i−1],candsig)

accept<−g(cand,xnew,nnew)−g(out[i−1],xnew,nnew)

u<−runif(1,0,1)

if (log(u)<accept) {out[i]<−cand}

}

out1<−out[burn:(length+burn)]

munew<−out1−rnorm(length(out1),0,sqrt(vardel1[burn:(length+burn)]))

pnew<−(exp(munew+beta1[burn:(length+burn)]∗fnew+lam1[burn:(length+burn)])
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/(1+exp(munew+beta1[burn:(length+burn)]∗fnew+lam1[burn:(length+burn)])))

return(pnew)

}

#defining parameters needed for likelihood specification#

phi.a<−1

phi.s<−1

#specification of priors#

#hyperparameters for u#

m<−log(.07/.93)

v<−((log(.09/.91)−log(.05/.95))/6)ˆ2

x<−seq(−3,3,.01)

lines(x,dnorm(x,m,sqrt(v)))

#hyperparameters for s#

mean<−4∗((log(.09/.91)−log(.05/.95))/6)ˆ2 #we have four designs#

var<−8∗((log(.09/.91)−log(.05/.95))/6)ˆ2

a<−meanˆ2/var+2

b<−mean∗a−mean

#hyperparameters for beta#

m.beta<−225

v.beta<−5500

x<−seq(−20,470,1)

plot(x,dnorm(x,m.beta,sqrt(v.beta)),type=’l’,ylim=c(0,.006))

#hyperparameters for lamda#

m.lam<−0

v.lam<−0.04
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x<−seq(−.7,.7,.01)

plot(x,dnorm(x,m.lam,sqrt(v.lam)),type=’l’, ylim=c(0,2))

#hyperparameters for vardel − overdispersion parameter#

#inverse gamma#

mean<−.01

var<−.5

a.vardel<−meanˆ2/var+2

b.vardel<−mean∗a.vardel−mean

#pvardel<−1/rgamma(1000000,a.vardel,rate=b.vardel)#

#log complete conditionals#

lccmu<−function(mu,beta,lam,u,s,mustar,vardel,id){sum((XA[DesignA==id]∗

(mu+beta∗F[DesignA==id]+lam)−N1[DesignA==id]∗

log(1+exp(mu+beta∗F[DesignA==id]+lam)))/phi.a)−

(mu−u)ˆ2/2/s−sum((mustar[DesignB==id]−mu))ˆ2/2/(vardel)}

lccmustar<−function(mustar,u,s,vardel,mu,obs){sum((XB[obs]∗(mustar)−N2[obs]∗

log(1+exp(mustar)))/phi.s)−(mustar−mu)ˆ2/2/(vardel)}

lccbeta<−function(murepA,beta,lam){sum((XA∗(murepA+beta∗F+lam)−N1∗

log(1+exp(murepA+beta∗F+lam)))/phi.a)−(beta−m.beta)ˆ2/2/v.beta}

lcclam<−function(murepA,beta,lam){sum((XA∗(murepA+beta∗F+lam)−N1∗

log(1+exp(murepA+beta∗F+lam)))/phi.a)−(lam−m.lam)ˆ2/2/v.lam}

#Initialize Vectors#

burn<−200000

length<−350000

mu<−matrix(0,ncol=4,nrow=(length+burn))

mustar<−matrix(0,ncol=11,nrow=(length+burn))
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u<−numeric()

s<−numeric()

beta<−numeric()

lam<−numeric()

del<−numeric()

vardel<−numeric()

#Starting Values#

mu[1,]<−rep(m,4)

mustar[1,]<−rep(m,11)

u[1]<−m

s[1]<−mean

beta[1]<−30

lam[1]<−.1

del[1]<−0

vardel[1]<−.01

candsig.mu<−.2

candsig.mustar<−.003

candsig.beta<−40

candsig.lam<−.1

#Gibbs Sampler#

for(i in 2:(length+burn)){

#update for mu#

for (j in 1:4){

mu[i,j]<−mu[i−1,j]
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old<−mu[i−1,j]

cand<−rnorm(1,old,candsig.mu)

llo<−lccmu(old,beta[i−1],lam[i−1],u[i−1],s[i−1],mustar[i−1,],vardel[i−1],j)

lln<−lccmu(cand,beta[i−1],lam[i−1],u[i−1],s[i−1],mustar[i−1,],vardel[i−1],j)

uu<−runif(1,0,1)

if(log(uu)<(lln−llo)){mu[i,j]<−cand}

}

mu1<−rep(mu[i,1],sum(DesignA==1))

mu2<−rep(mu[i,2],sum(DesignA==2))

mu3<−rep(mu[i,3],sum(DesignA==3))

mu4<−rep(mu[i,4],sum(DesignA==4))

mu1B<−rep(mu[i,1],sum(DesignB==1))

mu2B<−rep(mu[i,2],sum(DesignB==2))

mu3B<−rep(mu[i,3],sum(DesignB==3))

mu4B<−rep(mu[i,4],sum(DesignB==4))

murepA<−c(mu1,mu2,mu3,mu4)

murepB<−c(mu1B,mu2B,mu3B,mu4B)

#update for mustar#

for (j in 1:11){

mustar[i,j]<−mustar[i−1,j]

old<−mustar[i−1,j]

cand<−rnorm(1,old,candsig.mustar)

llo<−lccmustar(old,u[i−1],s[i−1],vardel[i−1],murepB[j],j)

lln<−lccmustar(cand,u[i−1],s[i−1],vardel[i−1],murepB[j],j)

uu<−runif(1,0,1)
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if(log(uu)<(lln−llo)){mustar[i,j]<−cand}

}

#update for u#

newmean<−(sum(mu[i,])∗v+m∗s[i−1])/(s[i−1]+4∗v)

newvar<−s[i−1]∗v/(s[i−1]+4∗v)

u[i]<−rnorm(1,newmean,sqrt(newvar))

#update for s#

anew <− a + 4/2

bnew <− (b + sum((mu[i,]−u[i])ˆ2)/2)

s[i] <− 1/rgamma(1,anew,rate=bnew)

#update for beta#

beta[i]<−beta[i−1]

old<−beta[i−1]

cand<−rnorm(1,old,candsig.beta)

llo<−lccbeta(murepA,old,lam[i−1])

lln<−lccbeta(murepA,cand,lam[i−1])

uu<−runif(1,0,1)

if(log(uu)<(lln−llo)){beta[i]<−cand}

#update for lam#

lam[i]<−lam[i−1]

old<−lam[i−1]

cand<−rnorm(1,old,candsig.lam)
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llo<−lcclam(murepA,beta[i],old)

lln<−lcclam(murepA,beta[i],cand)

uu<−runif(1,0,1)

if(log(uu)<(lln−llo)){lam[i]<−cand}

#update for vardel#

anew <− a.vardel + 11/2

bnew <− (b.vardel + sum((mustar[i,]−murepB)ˆ2)/2)

vardel[i] <− 1/rgamma(1,anew,rate=bnew)

}

#convergence diagnostic plots#

beta2<−numeric()

lam2<−numeric()

mu2<−matrix(0,3000,4)

vardel2<−numeric()

#convergence plots#

for (i in 1:3000){

beta2[i]<−beta[100∗i]

lam2[i]<−lam[100∗i]

vardel2[i]<−vardel[100∗i]

mu2[i,]<−mu[100∗i,]

}

par(mfrow=c(3,1))
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plot(beta2,type=’l’)

plot(lam2,type=’l’)

plot(vardel2[3:3000],type=’l’)

par(mfrow=c(2,2))

plot(mu2[,1],type=’l’)

plot(mu2[,2],type=’l’)

plot(mu2[,3],type=’l’)

plot(mu2[,4],type=’l’)

#removing the burn#

mu1<−mu[burn:(length+burn),]

mustar1<−mustar[burn:(length+burn),]

u1<−u[burn:(length+burn)]

s1<−s[burn:(length+burn)]

beta1<−beta[burn:(length+burn)]

lam1<−lam[burn:(length+burn)]

vardel1<−vardel[burn:(length+burn)]

#posterior distributions#

par(mfrow=c(1,1))

x<−seq(−.7,.7,.01)

plot(x,dnorm(x,m.lam,sqrt(v.lam)),lty=2, type=’l’, ylim=c(0,8), main=’ ’)

lines(density(lam1,adjust=2), lty=1)

legend(.2,6,c(’Prior’,’Posterior’),lty=c(2,1))

plot(density(beta1,adjust=2),main=’ ’,ylim=c(0,.012), xlim=c(−50,420))

x<−seq(−20,470,1)
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lines(x,dnorm(x,m.beta,sqrt(v.beta)),lty=2)

legend(200,.01,c(’Prior’,’Posterior’),lty=c(2,1))

plot(density(vardel1),main=’ ’,xlim=c(0,.03))

library(MCMCpack)

x<−seq(0,.03,length=1000)

lines(x,dinvgamma(x,a.vardel,rate=b.vardel),lty=2)

legend(.01,400,c(’Prior’,’Posterior’),lty=c(2,1))

plot(density(mu1[,1]))

plot(density(s1))

plot(density(u1))

#posterior distribution of accelerator discrepancy terms#

plot(density(beta1∗F[1]+lam1), main=’ ’,xlim=c(−.005,.3),ylim=c(0,30))

lines(density(beta1∗F[3]+lam1), lty=2)

lines(density(beta1∗F[6]+lam1), lty=6)

lines(density(beta1∗F[39]+lam1), lty=9)

legend(.2,25,c(’Multiplier’,’Counter’,’SSRA’,’Synthetic’),lty=c(1,2,6,9))

interval(beta1∗F[1]+lam1)

interval(beta1∗F[3]+lam1)

interval(beta1∗F[6]+lam1)

interval(beta1∗F[39]+lam1)

#for the true proportion of sensitive configuration bits#

plot(density(exp(mu1[,1])/(1+exp(mu1[,1]))),

xlim=c(.03,.12),ylim=c(0,800),main=’ ’)
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lines(density(exp(mu1[,2])/(1+exp(mu1[,2]))),lty=2)

lines(density(exp(mu1[,3])/(1+exp(mu1[,3]))),lty=6)

lines(density(exp(mu1[,4])/(1+exp(mu1[,4]))),lty=9)

legend(.06,800,c(’Multiplier’,’Counter’,’SSRA’,’Synthetic’),lty=c(1,2,6,9))

interval(exp(mu1[,4])/(1+exp(mu1[,4])))

#for the true proportion of sensitive bits at the accelerator#

plot(density(pmult<−(exp(mu1[,1]+beta1∗F[1]+lam1)/(1+exp(mu1[,1]+beta1∗F[1]+lam1)))),

xlim=c(.03,.12),ylim=c(0,600),main=’ ’)

lines(density(pcount<−(exp(mu1[,2]+beta1∗F[3]+lam1)/(1+exp(mu1[,2]+

beta1∗F[3]+lam1)))),lty=2)

lines(density(pssra<−(exp(mu1[,3]+beta1∗F[6]+lam1)/(1+exp(mu1[,3]+

beta1∗F[6]+lam1)))),lty=6)

lines(density(psynth<−(exp(mu1[,4]+beta1∗F[39]+lam1)/(1+exp(mu1[,4]+

beta1∗F[39]+lam1)))),lty=9)

legend(.04,500,c(’Multiplier’,’Counter’,’SSRA’,’Synthetic’),lty=c(1,2,6,9))

interval(pmult)

interval(pcount)

interval(pssra)

interval(psynth)

#predicts expected counts of accelerator behavior at next test#

pmult1000<−rbinom(length(lam1),1000,pmult)

pmult5000<−rbinom(length(lam1),5000,pmult)

pmult10000<−rbinom(length(lam1),10000,pmult)
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interval1(pmult1000)

interval1(pmult5000)

interval1(pmult10000)

pcount1000<−rbinom(length(lam1),1000,pcount)

pcount5000<−rbinom(length(lam1),5000,pcount)

pcount10000<−rbinom(length(lam1),10000,pcount)

interval1(pcount1000)

interval1(pcount5000)

interval1(pcount10000)

pssra1000<−rbinom(length(lam1),1000,pssra)

pssra5000<−rbinom(length(lam1),5000,pssra)

pssra10000<−rbinom(length(lam1),10000,pssra)

interval1(pssra1000)

interval1(pssra5000)

interval1(pssra10000)

psynth1000<−rbinom(length(lam1),1000,psynth)

psynth5000<−rbinom(length(lam1),5000,psynth)

psynth10000<−rbinom(length(lam1),10000,psynth)

interval1(psynth1000)

interval1(psynth5000)
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interval1(psynth10000)

#prediction for a new design with the following characteristics...#

#14,235 flip flops and a simulator sensitivity of 0.0772#

fnew<−14235/5210024

nnew<−290501200

xnew<−round(nnew∗0.0772)

#simulate mustar for this observation#

g<−function(mustar,xnew,nnew){xnew∗(mustar)−nnew∗log(1+exp(mustar))}

out<−numeric()

candsig<−.003

out[1]<−−2.3

for (i in 2:(length+burn)) {

out[i]<−out[i−1]

cand<−rnorm(1,out[i−1],candsig)

accept<−g(cand,xnew,nnew)−g(out[i−1],xnew,nnew)

u<−runif(1,0,1)

if (log(u)<accept) {out[i]<−cand}

}

out1<−out[burn:(length+burn)]

munew<−out1−rnorm(length(out1),0,sqrt(vardel1))

pnew<−(exp(munew)/(1+exp(munew)))

pnew<−(exp(munew+beta1∗fnew+lam1)/(1+exp(munew+beta1∗fnew+lam1)))

interval(pnew)

pnew1000<−rbinom(length(pnew),1000,pnew)

pnew5000<−rbinom(length(pnew),5000,pnew)
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pnew10000<−rbinom(length(pnew),10000,pnew)

interval1(pnew1000)

interval1(pnew5000)

interval1(pnew10000)

#prediction of accelerator behavior for hold−out data#

length<−100000

burn<−20000

plsfr<−prednew(30446011,581002440,8640)

pvmult36<−prednew(25031616,581002440,3744)

pvmul72<−prednew(357898191,2324011200,15264)

plsfr1069<−rbinom(length(plsfr),1069,plsfr)

interval1(plsfr1069)

pvmult363003<−rbinom(length(pvmult36),3003,pvmult36)

interval1(pvmult363003)

pvmult72a<−rbinom(length(pvmul72),9139,pvmul72)

interval1(pvmult72a)
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